## APPENDIX G

# ΝΟΙΣΕ

.....

.....

# Noise Background and Modeling Data

### NOISE BACKGROUND

#### Terminology and Noise Descriptors

The following are brief definitions of noise terminology:

- **Sound.** A vibratory disturbance that, when transmitted by pressure waves through a medium such as air, is capable of being detected by a receiving mechanism, such as the human ear or a microphone.
- Noise. Sound that is loud, unpleasant, unexpected, or otherwise undesirable.
- **Decibel** (**dB**). A unitless measure of sound on a logarithmic scale, which indicates the squared ratio of sound pressure amplitude to a reference sound pressure amplitude. The reference pressure is 20 micropascals.
- **A-Weighted Decibel (dBA).** An overall frequency-weighted sound level in decibels which approximates the frequency response of the human ear.
- Equivalent Continuous Noise Level (Leq). The mean of the noise level averaged over the measurement period, regarded as an average level.
- **Day-Night Level (Ldn).** The energy average of the A-weighted sound levels occurring during a 24-hour period, with 10 dB added to the A-weighted sound levels occurring during the period from 10 PM to 7 AM. The L<sub>dn</sub> and the CNEL are similar noise descriptors and rarely differ by more than 1 dBA.
- **Community Noise Equivalent Level (CNEL).** The energy average of the A-weighted sound levels occurring during a 24-hour period, with 5 dB added to the A-weighted sound levels occurring during the period from 7 to 10 PM and 10 dB added to the A-weighted sound levels occurring during the period from 10 PM to 7 AM.
- Sensitive Receptor. Noise- and vibration-sensitive receptors include land uses where quiet environments are necessary for enjoyment and public health and safety. Residences, schools, motels and hotels, libraries, religious institutions, hospitals, and nursing homes are examples.

 $L_{dn}$  and CNEL values rarely differ by more than 1 dB. As a matter of practice,  $L_{dn}$  and CNEL values are considered to be equivalent and are treated as such in this assessment.

#### Characteristics of Sound

Sound is a pressure wave transmitted through the air. When an object vibrates, it radiates part of its energy as acoustical pressure in the form of a sound wave. Sound can be described in terms of amplitude (loudness), frequency (pitch), or duration (time). The standard unit of measurement of the loudness of sound is the decibel (dB). The human hearing system is not equally sensitive to sound at all frequencies. Sound waves below 16 Hz are not heard at all and are "felt" more as a vibration. Similarly, while people with extremely sensitive hearing can hear sounds as high as 20,000 Hz, most people cannot hear above 15,000 Hz. In all cases, hearing acuity falls off rapidly above about 10,000 Hz and

below about 200 Hz. Since the human ear is not equally sensitive to sound at all frequencies, a special frequencydependent rating scale is usually used to relate noise to human sensitivity. The A-weighted decibel scale (dBA) performs this compensation by discriminating against frequencies in a manner approximating the sensitivity of the human ear.

Because of the physical characteristics of noise transmission and noise perception, the relative loudness of sound does not closely match the actual amounts of sound energy. Table 1, Change in Sound Pressure Level, dB, presents the subjective effect of changes in sound pressure levels. Typical human hearing can detect changes of approximately 3 dBA or greater under normal conditions. Changes of 1 to 3 dBA are detectable under quiet, controlled conditions and changes of less than 1 dBA are usually indiscernible. A change of 5 dBA or greater is typically noticeable to most people in an exterior environment and a change of 10 dBA is perceived as a doubling (or halving) of the noise.

| Table 1<br>Change in Sound Pressure Level, dB |                                          |  |  |  |  |
|-----------------------------------------------|------------------------------------------|--|--|--|--|
| Change in Apparent Loudness                   |                                          |  |  |  |  |
| $\pm$ 3 dB                                    | Threshold of human perceptibility        |  |  |  |  |
| $\pm 5 \text{ dB}$                            | Clearly noticeable change in noise level |  |  |  |  |
| $\pm$ 10 dB                                   | Half or twice as loud                    |  |  |  |  |
| ± 20 dB                                       | Much quieter or louder                   |  |  |  |  |
| Source: Bies and Hansen                       | 2003.                                    |  |  |  |  |

#### Point and Line Sources

Noise may be generated from a point source, such as a piece of construction equipment, or from a line source, such as a road containing moving vehicles. Because noise spreads in an ever-widening pattern, the given amount of noise striking an object, such as an eardrum, is reduced with distance from the source. This is known as "spreading loss." The typical spreading loss for point source noise is 6 dBA per doubling of the distance from the noise source.

A line source of noise, such as vehicles proceeding down a roadway, would also be reduced with distance, but the rate of reduction is affected by of both distance and the type of terrain over which the noise passes. Hard sites, such as developed areas with paving, reduce noise at a rate of 3 dBA per doubling of the distance while soft sites, such as undeveloped areas, open space and vegetated areas reduce noise at a rate of 4.5 dBA per doubling of the distance. These represent the extremes and most areas would actually contain a combination of hard and soft elements with the noise reduction placed somewhere in between these two factors. Unfortunately, the only way to actually determine the absolute amount of attenuation that an area provides is through field measurement under operating conditions with subsequent noise level measurements conducted at varying distances from a constant noise source.

Objects that block the line of sight attenuate the noise source if the receptor is located within the "shadow" of the blockage (such as behind a sound wall). If a receptor is located behind the wall, but has a view of the source, the wall would do little to reduce the noise. Additionally, a receptor located on the same side of the wall as the noise source may experience an increase in the perceived noise level, as the wall would reflect noise back to the receptor compounding the noise.

### Noise Metrics

Several rating scales (or noise "metrics") exist to analyze adverse effects of noise, including traffic- generated noise, on a community. These scales include the equivalent noise level ( $L_{eq}$ ), the community noise equivalent level (CNEL) and the day/night noise level ( $L_{dn}$ ).  $L_{eq}$  is a measurement of the sound energy level averaged over a specified time period.

The CNEL noise metric is based on 24 hours of measurement. CNEL differs from  $L_{eq}$  in that it applies a time-weighted factor designed to emphasize noise events that occur during the evening and nighttime hours (when quiet time and sleep disturbance is of particular concern). Noise occurring during the daytime period (7:00 AM to 7:00 PM) receives no penalty. Noise produced during the evening time period (7:00 to 10:00 PM) is penalized by 5 dB, while nighttime (10:00 PM to 7:00 AM) noise is penalized by 10 dB. The  $L_{dn}$  noise metric is similar to the CNEL metric except that the period from 7:00 to 10:00 PM receives no penalty. Both the CNEL and  $L_{dn}$  metrics yield approximately the same 24-hour value (within 1 dB) with the CNEL being the more restrictive (i.e., higher) of the two.

## Psychological and Physiological Effects of Noise

Physical damage to human hearing begins at prolonged exposure to noise levels higher than 85 dBA. Exposure to high noise levels affects the entire system, with prolonged noise exposure in excess of 75 dBA increasing body tensions, thereby affecting blood pressure and functions of the heart and the nervous system. In comparison, extended periods of noise exposure above 90 dBA would result in permanent cell damage. Table 2 shows typical noise levels from various noise sources.

| Τυρία                              | Table 2<br>al Noise Levels from N | oise Sources                               |
|------------------------------------|-----------------------------------|--------------------------------------------|
| Common Outdoor Activities          | Noise<br>Level                    | Common Indoor Activities                   |
|                                    | 110                               | Rock Band                                  |
| Jet Flyover at 1,000 feet          |                                   |                                            |
|                                    | 100                               |                                            |
| Gas Lawn Mower at three feet       |                                   |                                            |
|                                    | 90                                |                                            |
| Diesel Truck at 50 feet, at 50 mph |                                   | Food Blender at 3 feet                     |
|                                    | 80                                | Garbage Disposal at 3 feet                 |
| Noisy Urban Area, Daytime          |                                   |                                            |
|                                    | 70                                | Vacuum Cleaner at 10 feet                  |
| Commercial Area                    |                                   | Normal speech at 3 feet                    |
| Heavy Traffic at 300 feet          | 60                                |                                            |
|                                    |                                   | Large Business Office                      |
| Quiet Urban Daytime                | 50                                | Dishwasher Next Room                       |
| Quiet Urban Nighttime              | 40                                | Theater, Large Conference Room (backgroun  |
| Quiet Suburban Nighttime           |                                   |                                            |
|                                    | 30                                | Library                                    |
| Quiet Rural Nighttime              |                                   | Bedroom at Night, Concert Hall (background |
|                                    | 20                                |                                            |
|                                    |                                   | Broadcast/Recording Studio                 |
|                                    | 10                                |                                            |
| Lowest Threshold of Human Hearing  | 0                                 | Lowest Threshold of Human Hearing          |

#### Vibration

Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. Vibration is normally associated with activities such as railroads or vibrationintensive stationary sources, but can also be associated with construction equipment, such as jackhammers, pile drivers, and hydraulic hammers. Vibration displacement is the distance that a point on a surface moves away from its original static position. The instantaneous speed that a point on a surface moves is described as the velocity, and the rate of change of the speed is described as the acceleration. Each of these descriptors can be used to correlate vibration to human response, building damage, and acceptable equipment vibration levels. During the construction of a building, the operation of construction equipment could cause groundborne vibration. The three main wave types of concern in the propagation of groundborne vibrations are surface or Rayleigh waves, compression or P-waves, and shear or S-waves.

- Surface or Rayleigh waves travel along the ground surface. They carry most of their energy along an expanding cylindrical wave front, similar to the ripples produced by throwing a rock into a lake. The particle motion is more or less perpendicular to the direction of propagation (known as retrograde elliptical).
- Compression or P-waves are body waves that carry their energy along an expanding

spherical wave front. The particle motion in these waves is longitudinal, in a push-pull motion. P-waves are analogous to airborne sound waves.

 Shear or S-waves are also body waves, carrying their energy along an expanding spherical wave front. Unlike P-waves, however, the particle motion is transverse, or perpendicular to the direction of propagation.

The peak particle velocity (PPV) or the root mean square (RMS) velocity is usually used to describe vibration amplitudes. PPV is defined as the maximum instantaneous peak of the vibration signal and RMS is defined as the square root of the average of the squared amplitude of the signal. PPV is more appropriate for evaluating potential building damage, whereas RMS is typically more suitable for evaluating human response.

The units for PPV and RMS velocity are normally inches per second (in/sec). Often, vibration is presented and discussed in dB units to compress the range of numbers required to describe the vibration. All PPV and RMS velocity are in in/sec and all vibration levels in this study are in dB relative to 1 micro-inch per second (abbreviated as VdB). The threshold of perception is approximately 65 VdB. Typically groundborne vibration generated by manmade activities attenuates rapidly with distance from the source of the vibration. Manmade vibration problems are usually confined to short distances (500 feet or less) from the source.

Construction generally includes a wide range of activities that can generate groundborne vibration. In general, demolition of structures generates the highest vibrations. Vibratory compactors or rollers, pile drivers, and pavement breakers can generate perceptible amounts of vibration at distances within 200 feet of the vibration sources. Heavy trucks can also generate groundborne vibrations that vary, depending on vehicle type, weight, and pavement conditions. Potholes, pavement joints, discontinuities, differential settlement of pavement, etc., all increase the vibration levels from vehicles passing over a road surface. Construction vibration is normally of greater concern than vibration of normal traffic on streets and freeways with smooth pavement conditions. Trains generate substantial quantities of vibration due to their engines, steel wheels, and heavyloads.

Operation of construction equipment generates vibrations that spread through the ground and diminish in amplitude (strength) with distance from the source. The effect on buildings near a construction site varies depending on soil type, ground strata, and receptor building construction. The generation of vibration can range from no perceptible effects at the lowest vibration levels, to low rumbling sounds and perceptible vibrations at moderate levels, to slight damage at the highest levels. Ground vibrations from construction activities rarely reach levels that can damage structures, but can achieve the perceptible ranges in buildings close to a construction site.

#### Sensitive Receptors

Certain land uses are particularly sensitive to noise and vibration. Noise- and vibration-sensitive uses include land uses where quiet environments are necessary for enjoyment and public health and safety. Residences, schools, guest lodging, libraries, religious institutions, hospitals, nursing homes, and passive recreation areas are generally more sensitive to noise than commercial and industrial land use.

## NOISE AND VIBRATION REGULATORY ENVIRONMENT

#### Noise

To limit exposure of people to intrusive and physically and/or psychologically damaging noise levels, the federal government, the State of California, some county governments, and most municipalities in the state have established standards and ordinances to control noise.

The United States Environmental Protection Agency (USEPA) has developed general guidelines for recommended maximum noise levels to protect public health and welfare and the hearing of workers exposed to occupational noise.

#### State

Cities and counties in California are preempted by federal law from controlling noise generated from most mobile sources, including noise generated by vehicles and trucks on the roadway, trains on the railroad, and airplanes. Table 3 shows a land use compatibility chart for community noise adopted by the State of California as part of General Plan Guidelines.<sup>1</sup> This table provides urban planners with a tool to gauge the compatibility of new land uses relative to existing and future noise levels. As shown in the table, hotels, motels, and other transient lodging are normally acceptable land uses up to a noise level of 65 dBA CNEL.

<sup>&</sup>lt;sup>1</sup> California Office of Noise Control, *Guidelines for the Preparation and Content of Noise Elements of the General Plan*, February 1976. Included in the State of California General Plan Guidelines.

|                                                                                                                                                                                                                                                                                                                                            | CNEL (dBA)                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Land Uses                                                                                                                                                                                                                                                                                                                                  | 55 60 65 70 75 80                                                                                                                                                                                                                                                          |
| Residential-Low Density<br>Single Family, Duplex, Mobile Homes                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                            |
| Residential- Multiple Family                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            |
| Transient Lodging, Motels, Hotels                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |
| Schools, Libraries, Churches, Hospitals, Nursing Homes                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| Auditoriums, Concert Halls, Amphitheatres                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |
| Sports Arena, Outdoor Spectator Sports                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                            |
| Playgrounds, Neighborhood Parks                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |
| Golf Courses, Riding Stables, Water Recreation, Cemeteries                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                            |
| Office Buildings, Businesses, Commercial and Professional                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |
| Industrial, Manufacturing, Utilities, Agricultural                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                            |
| Explanatory Notes                                                                                                                                                                                                                                                                                                                          | r <b>i i i i</b>                                                                                                                                                                                                                                                           |
| Normally Acceptable:<br>Specified land use is satisfactory based upon the<br>assumption that any buildings involved are of<br>normal conventional construction, without any<br>special noise insulation requirements.                                                                                                                      | Normally Unacceptable:<br>New construction or development should generally<br>be discouraged. If new construction does proceed, a<br>detailed analysis of the noise reduction requirements<br>must be made and needed noise insulation features<br>included in the design. |
| New construction or development should be undertaken<br>only after a detailed analysis of the noise reduction<br>requirements is made and the needed noise insulation<br>features included in the design. Conventional<br>construction, but with closed windows and fresh air<br>supply systems or air conditioning will normally suffice. | New construction or development should generally<br>not be undertaken.                                                                                                                                                                                                     |

| Table 3                                            |
|----------------------------------------------------|
| Land Use Compatibility for Community Noise Exposur |

Source: California Office of Noise Control, Guidelines for the Preparation and Content of Noise Elements of the General Plan, February 1976. Included in the State of California General Plan Guidelines.

## **Chapter 2.68 - MARINA REGULATIONS**

Sections:

2.68.270 - Noise limited during certain hours.

All persons within the Vallejo Marina shall keep noise to a minimum between eleven p.m. and seven a.m. No person shall shout, talk loudly, play musical instruments, or operate other noise making devices or equipment (except in an emergency) upon a vessel within the Vallejo Marina between these hours. Violation of this section, after appropriate warning, will constitute sufficient cause for the harbormaster to order the removal of the vessel from its berthing space at the Vallejo Marina.

(Ord. 136 N.C.(2d) § 3.05, 1973.)

## Chapter 7.84 - REGULATION OF NOISE DISTURBANCES

Sections:

7.84.010 - General prohibition—Loud unnecessary and unusual noise.

Notwithstanding any other provisions of the Vallejo Municipal Code and in addition thereto, it shall be unlawful for any person to willfully make or continue, or cause to be made or continued, any loud, unnecessary, and unusual noise which disturbs the peace or quiet of any neighborhood or which causes discomfort or annoyance to any reasonable person of normal sensitiveness residing in the area. The standard which may be considered in determining whether a violation of the provisions of this chapter exist may include, but not be limited to, the following:

- A. The level of noise;
- B. Whether the nature of the noise is usual or unusual;
- C. whether the origin of the noise is natural or unnatural;
- D. The level and intensity of the background noise, if any;
- E. The proximity of the noise to residential sleeping facilities;
- F. The nature and zoning of the area within which the noise emanates;
- G. The density of the inhabitation of the area within which the noise emanates;
- H. The time of the day and night the noise occurs;
- I. The duration of the noise;
- J. Whether the noise is recurrent, intermittent, or constant; and
- K. Whether the noise is produced by a commercial or noncommercial activity.

(Ord. 1377 N.C. (2d) § 1 (part), 1997.)

7.84.010 - General prohibition—Loud unnecessary and unusual noise.

Notwithstanding any other provisions of the Vallejo Municipal Code and in addition thereto, it shall be unlawful for any person to willfully make or continue, or cause to be made or continued, any loud, unnecessary, and unusual noise which disturbs the peace or quiet of any neighborhood or which causes discomfort or annoyance to any reasonable person of normal sensitiveness residing in the area. The standard which may be considered in determining whether a violation of the provisions of this chapter exist may include, but not be limited to, the following:

- A. The level of noise;
- B. Whether the nature of the noise is usual or unusual;
- C. whether the origin of the noise is natural or unnatural;
- D. The level and intensity of the background noise, if any;
- E. The proximity of the noise to residential sleeping facilities;
- F. The nature and zoning of the area within which the noise emanates;
- G. The density of the inhabitation of the area within which the noise emanates;
- H. The time of the day and night the noise occurs;
- I. The duration of the noise;
- J. Whether the noise is recurrent, intermittent, or constant; and
- K. Whether the noise is produced by a commercial or noncommercial activity.

## (Ord. 1377 N.C. (2d) § 1 (part), 1997.)

7.84.020 - Specific prohibitions.

In addition to and separate from the prohibition set forth in Section 7.84.010 above, the following acts, and the causing or permitting thereof, are hereby declared to be in violation of this ordinance. As used in this section, the term "noise disturbance" means any sound which (1) endangers or injures the safety or health of humans or animals; (2) annoys or disturbs a reasonable person of normal sensitiveness; or (3) endangers or injures personal or real property. The listing of specific prohibited activities in this section is not intended to limit the city's authority to regulate any and all loud, unnecessary and unusual noise pursuant to Section 7.84.010. Any noise not falling within the specific prohibitions set forth in this section is subject to regulation under the provisions of Section 7.84.010 above.

- A. Mechanical or (Electronic Devices. It shall be unlawful to use or permit to be used any mechanical or electronic device for the intensification of any sound or noise into the public streets which causes a noise disturbance.
- B. Advertisement. It shall be unlawful to use or permit to be used any instrument, whistle, drum, bell, or to make any other noise disturbance for the purpose of advertising, announcing, or otherwise calling attention to any goods, wares, merchandise, or any show, entertainment, or event. The provisions of this subsection shall not be construed to prohibit the selling by outcry of merchandise, food, or beverages at lawfully permitted sporting events, parades, fairs, circuses or other similarly permitted entertainment events.
- C. Animals and Birds. It shall be unlawful for any person owning, possessing, or harboring any animal or bird to allow said animal or bird to howl, bark, meow, squawk, or make other annoying noises continuously and/or incessantly for an unreasonable period of time so as to create a noise disturbance across a residential real property line. For purposes of this subsection, the

animal or bird noise shall not be deemed a noise disturbance if a person is trespassing or threatening to trespass upon private property in or upon which the animal or bird is situated, or is using any other means to tease or provoke the animal or bird. This provision shall not apply to a zoo or animal theme park.

- D. Emergency Signalling Device. It shall be unlawful to intentionally sound or permit the sounding outdoors of any fire, burglar, or civil defense alms, siren, whistle or similar stationary emergency signalling device, except for emergency purposes or for testing, as provided in subsections D 1 and 2 below.
  - 1. The testing of a stationary emergency signalling device shall not occur before seven a.m. or after nine p.m. Any such testing shall use only the minimum cycle test time, and in no case shall such test time exceed sixty seconds.
  - 2. The testing of the complete emergency signalling system, including the functioning of the signalling device, and personnel response to the signalling device, shall not occur before seven a.m. or after nine p.m. In no case shall such test exceed ten minutes.
- E. Burglar or Fire Alarm. It shall be unlawful to intentionally sound or permit the sounding, or fail to take reasonable actions to prevent the sounding of any exterior burglar, security or fire alarm or any motor vehicle burglar or security alarm which is not terminated within ten minutes of activation.
- F. Loading and Unloading. It shall be unlawful to load, unload, open, close, or to do other handling of boxes, crates, containers, building materials, garbage cans, or similar objects between the hours of nine p.m. and seven a.m. in such a manner as to cause a noise disturbance across a residential real property boundary. This subsection shall not apply to the collection and disposal of garbage and recyclable materials by the city's franchises.
- G. Domestic Power Tools. It shall be unlawful to operate or permit the operation of any mechanically powered saw, drill, sander, grinder, lawn, or garden tool, lawnmower, or other similar device between nine p.m. and seven a.m. so as to create a noise disturbance across a residential real property boundary.
- H. Sensitive Uses. It shall be unlawful to create or permit to be created within the city any noise disturbance in the vicinity of any hospital, church during hours of worship services, court house during hours of operation, or school during school hours.

(Ord. 1377 N.C. (2d) § 1 (part), 1997.)

7.84.030 - Violations and penalties; violations deemed a public nuisance.

- A. Any person who violates or causes or permits another person to violate any provision of this chapter is subject to, but not limited to, the fines and penalties specified in Chapter 1.12 of the Vallejo Municipal Code, and the administrative fines and administrative citations authorized pursuant to Chapter 1.15 of the Vallejo Municipal Code.
- B. As an alternative to the procedures set forth in subsection A, a person violating any provision of this chapter may be given a written or verbal warning to abate the noise violation as an intermediate enforcement measure. If the noise violation persists for more than five minutes after the warning is given or recurs within a one week period from the warning, a citation may be given in place of the warning. It is not a prerequisite to the enforcement of any provision of this chapter or the establishment of a violation of any provision of this chapter that a written or verbal warning to abate the noise violation be given to the person(s) responsible for such violation.

C. In addition to the penalties herein provided, any condition caused or permitted to exist in violation of any of the provisions of this chapter is a threat to the public health, safety and welfare, and is declared and deemed a public nuisance.

(Ord. 1377 N.C. (2d) § 1 (part), 1997.)

7.84.040 - Remedies not exclusive.

The remedies under this chapter are in addition to and do not supersede or limit any and all other remedies, civil or criminal. The remedies provided for herein shall be cumulative and not exclusive.

(Ord. 1377 N.C. (2d) § 1 (part), 1997.)

7.84.050 - Exceptions; public entities.

The prohibitions contained in this chapter shall not apply to the activities of any public entity, including but not limited to, the Greater Vallejo recreation district and the Vallejo City unified school district.

(Ord. 1377 N.C. (2d) § 1 (part), 1997.)

#### **Chapter 7.90 - MOTOR VEHICLES OPERATED ON PUBLIC AND PRIVATE PROPERTY**

Sections:

7.90.040 - Noise limitation.

No person shall operate on public or private property, other than a public street or highway, a motor vehicle, including a motorcycle or motor-driven cycle, as such are defined by the California Vehicle Code, at any time or under any condition of grade, load, acceleration or deceleration, in such a manner as to exceed the noise limit established for the type of vehicle being operated by the California Vehicle Code.

(Ord. 229 N.C. (2d) § 1 (part), 1974.)

#### Chapter 12.40 - EXCAVATIONS, GRADING AND FILLING

Sections:

12.40.010 - Purpose.

It is in the public interest, and it is necessary for the promotion and protection of the public safety, convenience, comfort, prosperity, general welfare and the city's natural resources, to establish minimum requirements for grading in order to:

https://www.municode.com/library/ca/vallejo/codes/code\_of\_ordinances

- A. Preserve and enhance the natural beauty of the land, streams and shorelines;
- B. Reduce or eliminate the hazards of earthslides, mud flows, rock falls, undue settlement, erosion, siltation and flooding.

(Ord. 400 N.C.(2d) § 1 (part), 1977.)

12.40.020 - Definitions.

Additional information not considered relevant to construction noise was omitted for brevity

(Ord. 400 N.C.(2d) § 1 (part), 1977.)

12.40.070 - Excavating, grading and filling—Regulations.

The following regulations shall apply to all excavating, grading and filling:

- A. One copy of approved plans and specifications shall be kept on the site at all times during the progress of grading work.
- B. All grading and noise therefrom, including, but not limited to, warming of equipment motors, in residential zones or within one thousand feet of any residential occupancy, hotel, motel or hospital shall be limited to between the hours of seven a.m. and six p.m.

Additional information not considered relevant to construction noise was omitted for brevity

(Ord. 620 N.C.(2d) § 3, 1981; Ord. 400 N.C.(2d) § 1 (part), 1977.)

12.40.150 - Violations—Creation of a dangerous or hazardous condition—Criminal penalties.

- A. The city engineer/director of public works may issue a stop-work order until violation of any provision of this chapter is corrected. If, in the opinion of the city engineer/director of public works, a grading operation creates a dangerous or hazardous condition, the engineer/director shall require the applicant to immediately abate such condition. If the applicant fails to abate the condition, the applicant's grading bond shall be called by the city and the cost of corrective work charged to the bond.
- B. In addition to the above and to the criminal provisions provided for in this code, violation of any provision of this chapter is declared to be a public nuisance and may be abated by the city.

(Ord. 620 N.C.(2d) § 4, 1981: Ord. 400 N.C.(2d) § 1 (part), 1977.)

## Chapter 16.72 - PERFORMANCE STANDARDS REGULATIONS

Sections:

16.72.010 - Title and purpose.

The provisions of Section 16.72.010 through Section 16.72.100, inclusive, shall be known as the performance standards regulations. The purpose of these provisions is to control dangerous or objectionable impacts of land uses and to implement the noise element of the Vallejo general plan.

(Ord. 558 N.C.(2d) § 2 (part), 1980.)

16.72.020 - Compliance.

The development services director may require the applicant for a building permit, prior to the issuance of such permit, to submit such information with respect to proposed machinery, processes, products, or environmental impacts as may be necessary to demonstrate the ability of the proposed uses to comply with applicable performance standards. Such required information may include reports by expert consultants. Whenever an environmental impact report has been submitted and determined to be adequate under state and city guidelines, no further information shall be required.

(Ord. 1368 N.C.(2d) § 18, 1996: Ord. 558 N.C.(2d) § 2 (part), 1980.)

16.72.030 - Noise performance standards.

No land use shall generate sound exceeding the maximum levels permitted in the following table when such sounds are measured in any of the zoning districts listed in this table:

| Zoning District                                                                                   | Maximum Sound Pressure Level<br>in Decibels |
|---------------------------------------------------------------------------------------------------|---------------------------------------------|
| Resource Conservation, Rural Residential, and Medical Districts                                   | 55                                          |
| Low, Medium, and High Density Residential Districts                                               | 60                                          |
| Professional Offices, Neighborhood, Pedestrian, and Waterfront<br>Shopping and Services Districts | 70                                          |
| Freeway Shopping and Service, Linear Commercial and Intensive Use Districts                       | 75                                          |

(Ord. 649 N.C.(2d) § 20, 1982: Ord. 558 N.C.(2d) § 2 (part), 1980.)

16.72.040 - Noise performance standards—Correction factors.

The following correction factors, when applicable, shall be applied to the maximum sound pressure levels given in Section 16.72.030:

| Time and Operation of Type of Noise                                      | Correction in Maximum Permitted<br>Decibels |
|--------------------------------------------------------------------------|---------------------------------------------|
| Emission only between 7 a.m. and 10 p.m.                                 | Plus 5                                      |
| Noise of unusual impulsive character such as hammering or drill pressing | Minus 5                                     |
| Noise of unusual periodic character such as hammering or screeching      | Minus 5                                     |

(Ord. 558 N.C.(2d) § 2 (part), 1980.)

16.72.050 - Noise performance standards—Exceptions.

The following sounds, upon compliance with state conditions, may exceed the maximum sound pressure levels given in Section 16.72.030:

- A. Time signals produced by places of employment or worship and school recess signals providing no one sound exceeds five seconds in duration and no one series of sounds exceeds twentyfour seconds in duration;
- B. Devotional and patriotic music of worship provided such music is emitted only between hours of seven and ten p.m.;
- C. Sounds from transportation equipment used exclusively in the movement of goods and people to and from a given premises, temporary construction or demolition work; and
- D. Sounds made in the interest of public safety.

(Ord. 558 N.C.(2d) § 2 (part), 1980.)

16.72.060 - Noise level measurement.

The following provisions shall determine means for measuring noise levels. Where these provisions conflict with other provisions of the Vallejo Municipal Code, the following shall remain applicable for purposes of this title:

- A. Setting of Meter. Any sound or noise level measurement made pursuant to the provisions of this title shall be measured with a sound level meter using an A-weighting and "slow" response pursuant to applicable manufacturer's instructions, except that for sounds of a duration of two seconds or less, the "fast" response shall be used and the average level during the occurrence of the sound reported.
- B. Calibration of Meter. The sound level meter shall be approximately calibrated and adjusted as necessary by means of an acoustical calibrator of the coupler-type to assure meter accuracy within the tolerances set forth in American National Standards ANSI-SI.4-1971.
- C. Location of Microphone. All measurements shall be taken at any lot line of a lot within the applicable zoning district. The measuring microphone shall not be less than four feet above the ground, at least four feet distant from walls or other large reflecting surfaces and shall be

protected from the effects of wind noises by the use of appropriate wind screens. In cases when the microphone must be located within ten feet of walls or similar large reflecting surfaces, the actual measured distances and orientation of sources, microphone and reflecting surfaces shall be noted and recorded. In no case shall a noise measurement be taken within five feet of the noise source.

D. Measured Sound Levels. The measurement of sound level limits shall be the average sound level for a period of one hour.

(Ord. 558 N.C.(2d) § 2 (part), 1980.)

16.72.080 - Vibration performance standards.

No use shall be operated in a manner which produces vibrations discernible without instruments at any point on the property line of the lot on which the use is located.

#### REFERENCES

California Department of Transportation (Caltrans). 2009. Technical Noise Supplement.

Bies, David A. and Colin H. Hansen. 2003. Engineering Noise Control: Theory and Practice. 3rd ed. New York: Spoon Press.

Federal Transit Administration (FTA). 2006, May. Transit Noise and Vibration Impact Assessment. United States Department of Transportation. FTA-VA-90-1003-06.

Governor's Office of Planning and Research. 2003, October. State of California General Plan Guidelines. Thalheimer, E.

2000. Construction Noise Control Program and Mitigation Strategy as the Central

Artery/Tunnel Project. Institute of Noise Control Engineering.

United States Environmental Protection Agency (USEPA). 1974, March. Information on Levels of Environmental Noise

Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. Office of Noise Abatement and Control.

# **Noise Element**

# Introduction

Noise is part of everyday life in a community. *Noise* is generally defined as unwanted sound. Whether a sound is unwanted depends on when and where it occurs, what the listener is doing when it occurs, characteristics of the sound (loudness, pitch and duration, speech or music content, irregularity), and how intrusive it is above background sound levels.

The Noise Element of the General Plan addresses existing and projected noise in the community, sources of noise, land uses sensitive to noise, and noise guidelines and standards for guiding future development.

# **Purpose of the Noise Element**

The Noise Element is one of the required elements of the General Plan. The Noise Element is required to present information on the existing and projected noise environment, existing noise problems, and noise standards. This information is used as a basis for a set of policies and programs that minimize the exposure of community residents to excessive noise.

# **Noise Fundamentals**

*Sound* is the result of air pressure fluctuations created by vibration of an object. Sound travels through the air as waves of minute air pressure fluctuations. In general, sound waves travel away from the sound source as an expanding spherical surface. The energy contained in a sound wave is consequently spread over an increasing area as it travels away from the source. This spread results in a decrease in loudness at greater distances from the sound source.

Sound-level meters measure the pressure fluctuations caused by sound waves. Because of the ability of the human ear to respond to a wide, dynamic range of sound pressure fluctuations, loudness is measured in terms of decibels (dB) on a logarithmic scale. This approach yields a scale that measures pressure fluctuations using a convenient notation and corresponds to our auditory perception of increasing loudness. Most sounds consist of a broad range of sound frequencies. Because the human ear is not equally sensitive to all frequencies, several frequency-weighting schemes have been used to develop composite decibel scales that approximate the way the human ear responds to sound levels. The "A-weighted" decibel scale (dBA) is the most widely used for this purpose. Typical A-weighted sound levels for various types of sound sources are summarized in Table 1.

Table 1. Typical Noise Levels

| Common Outdoor Activities                               | Noise Level<br>(dBA) | Common Indoor Activities                                                  |
|---------------------------------------------------------|----------------------|---------------------------------------------------------------------------|
|                                                         | <u> </u>             | Rock band concert                                                         |
| Jet fly-over at 300 meters (1,000 feet)                 | <u> — 100 —</u>      |                                                                           |
| Gas lawn mower at 1 meter (3 feet)                      |                      |                                                                           |
| Diesel truck at 15 meters (50 feet) at 80 kph (50 mph)  |                      | Food blender at 1 meter (3 feet)                                          |
| Noisy urban area, daytime                               | <u> </u>             | Garbage disposal at 1 meter (3 feet)                                      |
| Gas lawn mower, 30 meters (100 feet)<br>Commercial area | —·70 —               | Vacuum cleaner at 3 meters (10 feet)<br>Normal speech at 1 meter (3 feet) |
| Heavy traffic at 90 meters (300 feet)                   | <u> </u>             |                                                                           |
| Quiet urban daytime                                     | <u> </u>             | Dishwasher next room                                                      |
| Quiet urban nighttime                                   | <u> </u>             | Theater, large conference room                                            |
| Quiet suburban nighttime                                |                      |                                                                           |
| Quiet rural nighttime                                   | <u> </u>             | Library<br>Bedroom at night                                               |
|                                                         | <u> </u>             | Broadcast/recording studio                                                |
|                                                         | <u> </u>             | ······································                                    |
| Lowest threshold of human hearing                       | <u> </u>             | Lowest threshold of human hearing                                         |

Time-varying sound levels are often described in terms of an equivalent constant decibel level. The *equivalent sound level* ( $L_{eq}$ ) is a single-value description of average sound exposure over various periods of time. Such average sound exposure values often are weighted to account for the potential for the sound to annoy people (because of the time of day or other factors). The  $L_{eq}$  data used for these average sound exposure descriptors are generally based on A-weighted sound-level measurements.

Average sound exposure over a 24-hour period is often presented as a *day-night* average sound level ( $L_{dn}$ ).  $L_{dn}$  values are calculated from hourly  $L_{eq}$  values, with the  $L_{eq}$  values for the nighttime period (10:00 p.m.-7:00 a.m.) increased by 10 dB

to reflect the greater potential for nighttime noises to disturb people.  $L_{dn}$  is commonly accepted as an appropriate descriptor for evaluating community noise exposure.

# **Existing Noise Environment**

Vallejo is a developed, urban city located at the mouth of the Carquinez Straits on the northeast edge of the San Francisco Bay. On the edges of the city, lowerdensity residential areas abut other suburban development, rural residential, agricultural areas, and bodies of water. In the downtown area, commercial uses, water-related uses, and residential uses coexist.

## **Existing Noise Sources**

In the City of Vallejo, vehicular traffic on roadways is the predominant source of noise. Airplanes and mechanical equipment also contribute to noise, as do intermittent sources such as leaf blowers and construction equipment. Noise levels are typically highest along highways and major traffic corridors.

## **Traffic and Transportation Noise Sources**

Highways in the city include Interstate 80, Interstate 780, and State Routes 29 and 37. Other major traffic corridors include Admiral Callaghan Lane, Benicia Road, Broadway/Alameda Street, Columbus Parkway, Curtola Parkway, Fairgrounds Drive, Georgia Street, Glen Cove Parkway, Lake Herman Road, Redwood Street/Parkway, Sacramento Street, Tennessee Street, and Tuolumne Street.

Bus traffic in the downtown area contributes to noise levels on major streets. A rail line runs north-south through the city along the eastern edge of the downtown area; however, only one to two trains travel on this line each day. Ferries to and from Vallejo dock at the ferry terminal in downtown Vallejo. Horn noise from the ferries can be heard in the downtown area.

No airports are located near Vallejo. Accordingly, noise from aircraft is limited.

Existing traffic noise contours in the city are summarized in Appendix A.

## Industrial Uses

Industrial uses generate varying levels of noise. There are very few major industrial uses that generate significant noise levels located in Vallejo. Those uses more likely to generate noise impacts are located on Mare Island. Other isolated industrial uses with noise impacts are distributed throughout the City. Primary noise sources are associated with loading and movement of products as well as some manufacturing or service related noises. The distance across the Mare Island Straits to the mainland significantly limits the extent to which noise from these uses is heard off the island; however, residential and commercial uses are currently being developed on Mare Island.

## **Commercial Uses**

Commercial uses in Vallejo that generate noise include amusement parks, such as Six Flags Marine World; entertainment uses, such as performance facilities and nightclubs; and other uses, such as retail facilities with noise-generating mechanical equipment or loading docks.

## **Other Noise-Generating Uses**

Other noise-generating uses produce more limited levels of noise. These types of uses include recreational uses and institutional uses. Specific noise generators can include equipment such as air conditioning systems and loudspeakers at stadiums or ball fields.

## **Noise-Sensitive Land Uses**

Noise-sensitive land uses in Vallejo include schools, hospitals, nursing homes, parks, and residential areas. In Vallejo, many of these uses are located in areas of high urban activity and are subject to relatively high outside noise levels.

## **Noise Complaints**

The Police Department is responsible for responding to general noise complaints. Noise complaints are scattered throughout the City; however, there is a concentration of noise complaints in some of the older areas of town where industrial uses abut residential uses. The buildings in these areas were constructed prior to the adoption of the Zoning Ordinance in 1947. Many of these buildings, both industrial and residential, are of historic and architectural interest.

There has been a trend in the last few years to adaptively reuse some of the old industrial buildings in these areas for less intense commercial uses that are more compatible with the adjacent and neighboring residential buildings. The adaptive reuse of the historic buildings should be encouraged and will lessen the noise level incompatibilities in these older areas of town; however, development policies that encourage the mixing and co-existence of land uses will continue to make noise attenuation a challenge within Vallejo.

4

# **Projected Noise Environment**

Projected traffic noise contours in the city for the year 2025 are summarized in Appendix A.

# Effects of Noise on People and Basis for Noise Standards

The noise environment can have a significant effect on overall quality of life. The known effects of noise on people include hearing loss (generally not a factor with community noise), interference with communication, interference with sleep, negative physiological responses, and annoyance. Because of the potentially adverse effects of noise on people, various federal and State agencies have, over the years, developed compatibility thresholds for various types of land uses. Compatibility thresholds for exterior noise developed by the U.S. Environmental Protection Agency form the basis for thresholds recommended by the Governor's Office of Planning and Research (OPR). The exterior noise compatibility standards presented here are based on those recommended by the OPR. The interior noise standard presented here is based on the interior noise standard in the California Noise Insulation Standards (Title 24, California Code of Regulations, Part 2).

# Policies

# Goal: Maintain noise compatibility in a manner that is acceptable to residents and reasonable for commercial and industrial land uses

## Policies

Policy 1: Apply the noise guidelines shown in Table 2 to land use decisions and other City actions.

1a: The exterior noise level at primary outdoor use areas for residences should not exceed the maximum "normally acceptable" level in Table 2 ( $L_{dn}$  of 60 dB for residences). Small decks and entry porches do not need to meet this goal. Noise levels up to  $L_{dn}$  65 dB may be allowed at the discretion of the City where it is not economically or aesthetically reasonable to meet the more restrictive outdoor goal.

**1b:** The interior noise standard shall be 45 dB- $L_{dn}$  for all residential uses, including single- and multi-family housing, hotels/motels, and residential healthcare facilities.

Policy 2: Avoid adverse effects of noise-producing activities on existing land uses by implementing noise reduction measures, limiting hours of operation, or by limiting increases in noise.

**2a:** Continue to enforce the noise regulations within the Vallejo Municipal Code, including Chapter 7.84 "Regulation of Noise Disturbances" and Chapter 16.72 "Performance Standards Regulations".

**2b:** Where appropriate, limit noise generating activities (for example, construction and maintenance activities and loading and unloading activities) to the hours of 7:00 a.m. to 9:00 p.m.

**2c:** When approving new development limit project-related noise increases to no more than 10 dB in non-residential areas and 5 dB in residential areas where the with-project noise level is less than the maximum "normally acceptable" level in Table 2. Limit project-related increases in all areas to no more than 3 dB where the with-project noise level exceeds the "normally acceptable" level in Table 2.

## Table 2. City of Vallejo Land Use Compatibility Guidelines for Community Noise Environment

|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | Com                                            | nunity Noise I                                       | Exposure - La                                          | (dBA)                                                 |                                                    |                                        |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------|
| Land Use Category                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                              | 5 · ·                                          | 60                                                   | 65                                                     | 70 7                                                  | 75                                                 | 80                                     |
| Residential—Low-Density Single-Fa<br>Duplex, Multi-Family, Mobile Homes | nily,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |                                                |                                                      |                                                        |                                                       |                                                    |                                        |
| Transient Lodging-Motels, Hotels                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                |                                                      |                                                        |                                                       |                                                    |                                        |
| Schools, Libraries, Churches, Hospita<br>Nursing Homes                  | ls,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                                |                                                      |                                                        |                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,            |                                        |
| Auditoriums, Concert Halls,<br>Amphitheaters                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                |                                                      |                                                        |                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,            |                                        |
| Sports Arenas, Outdoor Spectator Spo                                    | rts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                                |                                                      |                                                        |                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Playgrounds, Neighborhood Parks                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                |                                                      |                                                        |                                                       |                                                    |                                        |
| Golf Courses, Riding Stables, Water<br>Recreation, Cemeteries           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                |                                                      |                                                        |                                                       |                                                    |                                        |
| Office Buildings, Business Commerci<br>and Professional                 | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                                                |                                                      |                                                        |                                                       | /////                                              | *****                                  |
| Industrial, Manufacturing, and Utilitie                                 | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                                                |                                                      |                                                        |                                                       |                                                    |                                        |
| Normally Acceptable                                                     | Specified land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | use is satisfa                                                 | ctory, based                                   | upon the assu                                        | mption that an<br>nsulation requi                      | y buildings inv<br>rements.                           | olved are of n                                     | ormal                                  |
| Conditionally Acceptable                                                | New construction<br>reduction required<br>Conventional of<br>will normally s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ion or develop<br>irements is m<br>construction, i<br>suffice. | pment should<br>ade and need<br>but with clos  | l be undertake<br>led noise insu<br>ed windows a     | en only after a<br>lation features<br>and fresh air su | detailed analys<br>are included in<br>pply systems of | is of the noise<br>the design.<br>ar air condition | e<br>ning,                             |
| Normally Unacceptable                                                   | New construction development d | ion or develop<br>oes proceed,<br>isulation feat               | pment should<br>a detailed an<br>ures included | l generally be<br>alysis of the r<br>l in the desigr | discouraged.<br>loise reduction                        | If new constru<br>requirements                        | ction or<br>must be made                           | and                                    |
| Clearly Unacceptable                                                    | New construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ion or develo                                                  | pment genera                                   | ally should no                                       | t be undertake                                         | n.                                                    |                                                    |                                        |

7

.

.

· · ·

.

## GENERAL PLAN NOISE ELEMENT

## APPENDIX A

8

.

.

|                                         |                            |                            | <b>1</b>    |                       | · · · · · · · · · |          | i      |
|-----------------------------------------|----------------------------|----------------------------|-------------|-----------------------|-------------------|----------|--------|
| <b>—</b> .                              | Segme                      | nt Limits                  | Exi         | sting L <sub>dn</sub> | Contour           | Distance | (feet) |
| Roadway                                 |                            |                            |             | 1                     | 1 70              | 1        | 1      |
|                                         | From                       | 10,                        | 80          | /5                    | 1 70              | 65       | 60     |
|                                         | Jct. Interstate 80         | Lemon Street               |             | -                     | -                 | 85       | 183    |
|                                         | Lemon Street               | Maine Street               |             |                       |                   | 85       | 183    |
| 00.00.0                                 | Maine Street               | Tennessee Street           |             | -                     | 52                | 112      | 240    |
| SR 29 Sonoma Street                     | Tennessee Street           | Marine World Pkwy.         | <u> </u>    |                       | 55                | 118      | 255    |
|                                         | Marine World Pkwy.         | Mini Drive                 | -           | 55                    | 118               | 254      | 546    |
|                                         | Mini Drive                 | City Limits                |             | 59                    | 128               | 276      | 594    |
|                                         | Solano Coupty              | Mare Island, North Gate    |             | 59                    | 128               | 275      | 592    |
|                                         | Mara Island North Cate     | Sonoma Boulevard           | <u> </u>    |                       | 70                | 160      | 365    |
| SR 37 Marine World                      | Sanama Reulavard           | Broadway                   |             |                       | 02                | 109      | 426    |
| Parkway                                 | Breadward                  | Enirgroundo Drivo          | <u> _</u>   |                       | 105               | 200      | 420    |
|                                         | Broadway                   | Pargiounos Drive           | 70          | 00                    | 100               | 090      | 007    |
| ·····                                   | Fairgrounds Drive          | JCL Interstate 80          |             | 101                   | 324               | 039      | 1505   |
|                                         | Carquinez Bridge           | Jct. SR 29, Sonoma Street  | 95          | 205                   | 442               | 952      | 2050   |
|                                         | Jct. SR 29, Sonoma Street  | Magazine Street            | 92          | 198                   | 426               | 918      | 1978   |
|                                         | Magazine Street            | 1-780                      | 96          | 208                   | 448               | 964      | 2078   |
| Internetate PO                          | 1-780                      | Georgia Street             | 112         | 242                   | 520               | 1121     | 2416   |
| Interstate 80                           | Georgla Street             | Springs Road               | 116         | 250                   | 538               | 1159     | 2498   |
|                                         | Springs Road               | Tennessee Street           | 117         | 253                   | 545               | 1175     | 2531   |
|                                         | Tennessee Street           | Redwood Street             | 119         | 256                   | 552               | 1190     | 2563   |
|                                         | Redwood Street             | SR 37 Marine World Parkway | 105         | 227                   | 490               | 1055     | 2272   |
|                                         | SR 37 Marine World Parkway | Napa County Line           | · 91        | 195                   | 421               | 907      | 1955   |
| 1-1                                     | Glen Cove Road             | Jct. Interstate 80         | 55          | 118                   | 255               | 548      | 1181   |
| Interstate 780                          | Jct. Interstate 80         | Lemon Street (end)         |             | 89                    | 192               | 414      | 892    |
| · · · · · · · · · · · · · · · · · · ·   | Tennessee Street           | Redwood Parkway            |             | · _                   |                   |          | 93     |
| Admiral Callaghan                       | Redwood Parkway            | Turner Parkway             |             | -                     | 62                | 134      | 288    |
| lane                                    | Tumer Parkway              | Plaza Drive                |             |                       |                   | 77       | 166    |
| CONC                                    | Diaza Drive                | Columbus Parlovay          |             |                       | 5.9               | 126      | 271    |
| Alameda Street                          | 1 laza Dilye               | Coldfieds Fanting          | <u>_</u>    |                       |                   | 120      | 79     |
| Admedia Sueel                           |                            |                            |             |                       |                   | <u> </u> | - 10   |
| Anaut Dedauau                           |                            |                            |             |                       |                   |          | 460    |
| Ascor Faikway<br>Benicin Road           |                            |                            |             |                       |                   | (4       | 100    |
| benicia Roau                            |                            | 0027                       |             |                       |                   | 445      | 101    |
|                                         |                            | Tuelumna Street            |             |                       | 53                | 115      | 240    |
|                                         | SR3/                       | 1 uolumne Street           |             |                       |                   | 90       | 195    |
| O                                       | luolumne Street            | Ganbaloi Urive             |             |                       | ~                 | 105      | 227    |
| Broadway                                | Garibaldi Drive            | Sereno Drive               |             | -                     | 51                | 110      | 237    |
|                                         | Sereno Drive               | Redwood Street             |             |                       |                   | 95       | 205    |
|                                         | Redwood Street             | Tennessee Street           |             |                       |                   | 79       | 171    |
| •                                       | Tennessee Street           | Ohio Street                | <del></del> |                       | -                 | 60       | 129    |
|                                         | Interstate 80              | Admiral Callaghan Lane     |             | 73                    | 156               | 337      | 726    |
| 1                                       | Admiral Callaghan Lane     | Ascot Parkway              |             |                       | 91                | 196      | 422    |
|                                         | Ascot Parkway              | Redwood Parkway            |             | -                     | 84                | 180      | 388    |
|                                         | Redwood Parkway            | Club House Drive           |             |                       | 64                | 137      | 296    |
| Columbus Badavas                        | Club House Drive           | Lake Herman Road           |             |                       | 65                | 139      | 300    |
| Columbus Falkway                        | Lake Herman Road           | Ascot Parkway              |             | -                     |                   | 67       | 145    |
|                                         | Ascot Parkway              | Springs Road               |             |                       | 60                | 129      | 279    |
|                                         | Springs Road               | Georgia Street             |             |                       | 67                | 145      | 312    |
| Ì                                       | Georgia Street             | Regents Park Drive         |             | - 1                   | 66                | 142      | 306    |
| ľ                                       | Recents Park Drive         | Benicia Road               | -           |                       | 66                | 141      | 305    |
| Corcoran Avenue                         | Fairgrounds Drive          | Min! Drive                 |             |                       |                   |          | 73     |
| Couch Street                            | Sonoma Boulevard (SR20)    | Broadway                   |             |                       |                   |          | 89     |
| 0000100000                              | Mare Island Way            | Solano Avenue              |             |                       | 60                | 120      | 279    |
| Curtola Parkway                         | Solano Avenue              | L-780                      |             |                       | 71                | 154      | 331    |
|                                         | Corestan Street            | Borges Lapp                |             |                       |                   |          | 226    |
| -                                       | Corcoran Street            |                            |             |                       | 50                | 449      | 242    |
|                                         | Borges Lane                | Cataviav Datur             | -           |                       | - 02              | 107      | 243    |
|                                         | Laper Avenue               | Gateway Urive              | -           | -                     | 00                | 13/      | 295    |
| Fairgrounds Drive                       | Gateway Drive              | <u>SK37</u>                | -           |                       | 69                | 148      | 318    |
|                                         |                            | Marine World Entrance      |             |                       |                   | 68       | 147    |
| •                                       | Marine World Entrance      | Sereno Drive               |             |                       |                   | 68       | 146    |
|                                         | Sereno Drive               | Redwood Street             |             |                       | ]                 |          | 101    |
|                                         | Mare Island Way            | Sonoma Boulevard (SR29)    |             |                       |                   | 1        | 65     |
| <ul> <li>Florida Street</li> </ul>      | Sonoma Boulevard (SR29)    | Alameda Street             |             |                       |                   |          | 62     |
| t i i i i i i i i i i i i i i i i i i i | Alemeda Street             | Solano Aventie             | _           | -                     |                   | 1        | 92     |

## Table 1: Existing Noise Contours (Page 1 of 3)

į

|                      |                          | · · · · · · · · · · · · · · · · · · · |                                                  |          |                                               |            |             |
|----------------------|--------------------------|---------------------------------------|--------------------------------------------------|----------|-----------------------------------------------|------------|-------------|
|                      | Segment Limits           |                                       | Existing L <sub>dn</sub> Contour Distance (feet) |          |                                               |            |             |
| Roadway              | Eram                     | Ta                                    | . 00                                             | 75       | 1 70                                          | 65         | 60          |
|                      |                          |                                       | 1. 00                                            | <u> </u> | <u></u>                                       | 60         | 1 00        |
|                      | Santa Clara Street       | Sacramento Street                     |                                                  |          |                                               |            |             |
|                      | Sacramento Street        | Marin Street                          |                                                  |          |                                               |            | -           |
|                      | Marin Street             | Sonoma Boulevard (SR29)               |                                                  |          | <u>-</u>                                      |            |             |
|                      | Sonoma Boulevard (SR29)  | Alameda Street                        | <u> </u>                                         |          |                                               | +- <u></u> | 100         |
|                      | Alameda Street           | Amador Street                         | <u>↓</u>                                         |          | <u> </u>                                      | 51         |             |
| Georgia Street       | Arnador Street           |                                       |                                                  |          | +                                             | <u> </u>   | 111         |
|                      |                          | Li-ou                                 |                                                  | <u> </u> |                                               | 61         | 114         |
| r                    | I-OU<br>Monio Stroot     |                                       |                                                  |          | <u>                                      </u> | 10         | 102         |
|                      |                          | Rollingwood Drive                     | <u>                                     </u>     |          | +                                             |            | 105         |
|                      | Rollingwood Drive        | Columbus Parkway                      |                                                  |          |                                               |            | 73          |
|                      | Columbus Parkway         | Ascot Parkway                         |                                                  |          |                                               |            | 75          |
|                      | Interstate 780           | Robles Way                            |                                                  | -        | 52                                            | 113        | 242         |
|                      | Robles Way               | New Bedford Drive                     |                                                  | - 1      | <u> </u>                                      | 98         | 212         |
| Glen Cove Parkway    | New Bedford Drive        | South Regatta Drive                   |                                                  | <u> </u> |                                               | 80         | 173         |
|                      | South Regatta Drive      | end                                   | - 1                                              |          |                                               | 66         | 143         |
| Glen Cove Road       | Benicia Road             | Glen Cove Parkway                     |                                                  | - 1      | - 1                                           | 71         | 153         |
| Uldonheastic Dedausu | Interstate 80            | Bennington Drive                      |                                                  |          | -                                             |            | 85          |
| muuenotooke Parkway  | Bennington Drive         | Landmark Drive                        |                                                  |          | -                                             | - 1        | 73          |
| Lake Herman Road     | East of Columbus Parkway |                                       |                                                  |          | -52                                           | 111        | 239         |
| ,                    | Derr Avenue              | Sonoma Boulevard (SR29)               | 1                                                | -        |                                               | 57         | 123         |
| Lemon Street         | Sonoma Boulevard (SR29)  | Sixth Street                          |                                                  |          |                                               | 57         | 123         |
|                      | Sixth Street             | Curtola Parkway                       |                                                  |          |                                               | 55         | 119         |
|                      | Sonoma Boulevard (SR29)  | I-80                                  |                                                  | <u> </u> |                                               |            | 92          |
| Magazine Street      | 1-80                     | Laurel Street                         | <u></u> .                                        |          |                                               |            | 66          |
|                      | Laurel Street            | City Limits                           | <del></del> ,                                    |          |                                               |            | 75          |
| Mare Island Way      | · · · · ·                | Maine Otreat                          |                                                  |          |                                               | 107        | 231         |
| Marin Street         | Curtola Parkway          | Maine Street                          |                                                  |          |                                               | <u> </u>   | <u> </u>    |
|                      | Coordia Street           | Virginia Street                       |                                                  | <u>-</u> | -                                             | <u> </u>   |             |
|                      | Virginia Street          | Tennessee Street                      |                                                  |          |                                               | <u> </u>   |             |
|                      | Sonoma Boulevard (SR29)  | Echo Summit Drive                     |                                                  |          |                                               |            | 110         |
| Meadows Drive        | Echo Summit Drive        | Catalina Way                          |                                                  |          |                                               | 69         | 148         |
|                      | City Limits              | Sonoma Boulevard (SR29)               |                                                  |          |                                               | 57         | 122         |
| All all Data         | Sonoma Boulevard (SR29)  | Broadway                              |                                                  | ·        | -                                             | 58         | 126         |
| Mint Dave            | Broadway                 | Corcoran Avenue                       |                                                  |          |                                               | _          | 90          |
|                      | Corcoran Avenue          | SR37                                  |                                                  |          | -                                             |            | 92          |
|                      | Interstate 80            | Admiral Callaghan Lane                | _                                                | · 🛶      | 57                                            | 122        | 263         |
|                      | Admiral Callaghan Lane   | Oakwood Avenue                        | 1                                                | 1        | -                                             | 87         | 186         |
| Redwood Parkway      | Oakwood Avenue           | Ascot Parkway                         |                                                  |          | -                                             | 86         | 184         |
|                      | Ascot Parkway            | Rocky Shore Pl.                       | -                                                |          | -                                             | 64         | 138         |
|                      | Rocky Shore Pl.          | Columbus Parkway                      |                                                  | _        |                                               |            | 86          |
|                      | Sacramento Street        | Sonoma Boulevard (SR29)               |                                                  | -        | -                                             | 79         | 169         |
| Deduced in the       | Sonoma Boulevard (SR29)  | Couch Street                          |                                                  |          |                                               | 83         | 179         |
| Reawood Street       | Couch Street             | Broadway                              |                                                  |          |                                               | 92         | 198         |
|                      | Broadway                 | Valle VISta AVERUE                    |                                                  |          |                                               | 93         | 200         |
| Pollingwood Drive    | Valle VISTA AVENUE       |                                       |                                                  |          | 01                                            | 131        | 202         |
|                      | Maine Street             | Elorida Street                        |                                                  |          |                                               | <u> </u>   | 108<br>60 · |
|                      | Florida Street           | Tennessee Street                      |                                                  |          |                                               |            | 00          |
|                      | Tennessee Street         | Hichborn Street                       |                                                  |          |                                               |            | 161         |
| Sacramento Street    | Hichborn Street          | Valla Vieta Avenue                    |                                                  |          |                                               | 74         | 150         |
| ŀ                    | Valle Vista Avenue       | Redwood Street                        |                                                  |          |                                               | 64         | 137         |
| ŀ                    | Redwood Street           | SR37                                  |                                                  | -        |                                               |            | 106         |
| Santa Clara Street   |                          | · · · · · · · · · · · · · · · · · · · |                                                  |          |                                               | <u> </u>   | 53          |
|                      | Sonoma Boulevard (SR29)  | Broadway                              |                                                  |          |                                               | 53         | 115         |
| <b>0</b>             | Broadway                 | North Camino Alto                     |                                                  |          |                                               | 69         | 148         |
| Sereno Drive         | North Camino Alto        | Tuolumne Street                       |                                                  |          | -                                             | 56         | 122         |
| · [                  | Tuolumne Street          | Fairgrounds Drive                     |                                                  |          |                                               |            | 86          |
|                      | Sonoma Boulevard (SR29)  | Fifth Street                          |                                                  |          |                                               |            | 75          |
| Selene Auroni        | Fifth Street             | Curtola Parkway                       |                                                  | _        |                                               |            | 74          |
| Solano Avenue        | Curtola Parkway          | Benicia Road                          |                                                  |          |                                               |            | 91          |
|                      | Benicia Road             | Interstate 80                         | -                                                |          |                                               | 55         | 119         |

| Table 1: Existing Noise C | ontours (Pag | e 2 of 3) |
|---------------------------|--------------|-----------|
|---------------------------|--------------|-----------|

į

City of Vallejo General Plan Noise Element Update

.

| Roadway               | Segment Limits          |                         | Existing L <sub>dn</sub> Contour Distance (feet) |       |     |     |       |
|-----------------------|-------------------------|-------------------------|--------------------------------------------------|-------|-----|-----|-------|
| · Noadway             | From                    | То                      | 80                                               | 75    | 70  | 65  | 60    |
| Seringe Baad          | Interstate 80           | Maple Avenue            | [                                                | - 1   |     | 84  | 182   |
| Springs Road          | Maple Avenue            | Columbus Parkway        |                                                  |       | - 1 | 80  | 173   |
| Steffan Street        | Benicia Road            | Georgia Street          | -                                                |       |     | -   | 57    |
|                       | Mare Island Way         | Sonoma Boulevard (SR29) |                                                  |       |     | 85  | 183   |
|                       | Sonoma Boulevard (SR29) | Broadway                | ·                                                |       | 53  | 114 | 245   |
|                       | Broadway                | Tuolumne Street         | 1                                                | -     | 62  | 133 | 288   |
| Tennessee Street      | Tuolumne Street         | Interstate 80           |                                                  |       | 62  | 134 | 290   |
|                       | Interstate 80           | Oakwood Avenue          | 1                                                | ·     |     | 77  | 166   |
|                       | Oakwood Avenue.         | Rollingwood Drive       |                                                  | -     | -   | 56  | 120   |
|                       | Rollingwood Drive       | Columbus Parkway        | +                                                | - ·   |     | 57  | 122   |
|                       | Broadway                | Walnut Street           |                                                  | · - · |     | -   | 81    |
|                       | Walnut Street           | Del Mar Avenue          |                                                  |       |     | 67  | 145   |
| Tuolumna Streat       | Del Mar Avenue          | Valle Vista Avenue      |                                                  |       |     | 76  | 163   |
|                       | Valle Vista Avenue      | Nebraska Street         |                                                  |       | -   | 52  | 111 · |
|                       | Nebraska Street         | Tennessee Street        |                                                  | -     | +   | -   | 89    |
|                       | Tennessee Street        | Solano Avenue           |                                                  | -     |     |     | 105   |
| Turner Parkway        | Admiral Callaghan Lane  | Ascot Parkway           |                                                  | -     |     | 83  | 178   |
|                       | Ascot Parkway           | East of Ascot Parkway   | _                                                | -     |     | 66  | 143   |
| Valle Vista Avenue    | Sacramento Street       | Sonoma Bouleyard (SR29) | -                                                | +     | -   | -   | 67    |
| Y GILE Y ISLA AVEILUE | Sonoma Boulevard (SR29) | Fairgrounds Drive       |                                                  | -     |     |     | 75    |
| Wilson Avenue         | SR37                    | Hichborn Street         |                                                  | -     |     | 51  | 110   |
|                       | Hichborn Street         | Tennessee Street        |                                                  | -     |     | 61  | 131   |

## Table 1: Existing Noise Contours (Page 3 of 3)

ł

| <b>D</b> = + -1     | Segment Limits                     |                            |          | Future L <sub>dn</sub> Contour Distance (feet) |          |                                              |                  |  |  |
|---------------------|------------------------------------|----------------------------|----------|------------------------------------------------|----------|----------------------------------------------|------------------|--|--|
| Roadway             | From                               | То                         | 80       | 75                                             | 70       | 65                                           | 60               |  |  |
|                     | Ict Interstate 80                  | Lamon Street               |          |                                                | +        | 100                                          | 1 00             |  |  |
|                     | Lemon Street                       | Maine Street               | <u> </u> |                                                | +        | 108                                          | 232              |  |  |
|                     | Maine Street                       | Tennessee Street           |          |                                                | 66       | 141                                          | 305              |  |  |
| SR 29 Sonoma Street | Tennessee Street                   | Marine World Pkwy.         |          |                                                | 70       | 150                                          | 323              |  |  |
| 1                   | Marine World Pkwy.                 | Mini Drive                 |          | 69                                             | 149      | 321                                          | 692              |  |  |
|                     | Min! Drive                         | City Limits                | - 1      | 75                                             | 162      | 349                                          | 752              |  |  |
|                     | Solano County                      | Mare Island, North Gate    |          | 106                                            | 228      | 492                                          | 1061             |  |  |
| SD 27 Marine Madd   | Mare Island, North Gate            | Sonoma Boulevard           |          | 65                                             | 141      | . 304                                        | 654              |  |  |
| Parkway             | Sonoma Boulevard                   | Broadway                   |          | 69                                             | 148      | 320                                          | 689              |  |  |
| i annay             | Broadway                           | Fairgrounds Drive          | 53       | 114                                            | 246      | 529                                          | 1140             |  |  |
|                     | Fairgrounds Drive                  | Jct. Interstate 80         | 71       | 153                                            | 331      | 712                                          | 1535             |  |  |
|                     | Carquinez Bridge                   | Jct. SR 29, Sonoma Street  | 133      | 287                                            | 619      | 1334                                         | 2873             |  |  |
|                     | Jct. SR 29, Sonoma Street          | Magazine Street            | 131      | 282                                            | 607      | 1307                                         | 2815             |  |  |
|                     | Magazine Street                    | 1-780                      | .134     | 288                                            | 620      | 1337                                         | 2880             |  |  |
|                     | 1-780                              | Georgia Street             | 136      | 294.                                           | 633      | 1365                                         | 2940             |  |  |
| Interstate 80       | Georgia Street                     | Springs Road               | 137      | 296                                            | 638      | 1374                                         | 2960             |  |  |
|                     | Springs Road                       | Tennessee Street           | 138      | 297                                            | 641      | 1380                                         | 2973             |  |  |
|                     | Performed Street                   | Redwood Street             | 139      | 300                                            | 646      | 1392                                         | 2998             |  |  |
|                     | Redwood Street                     | SK 37 Marine World Parkway | 133      | 287                                            | 618      | 1333                                         | 2871             |  |  |
|                     | SR 37 Manne Wond Parkway           | Napa County Line           | 129      | 2/0                                            | 000      | 1292                                         | 2783             |  |  |
| Interstate 780      | Gien Cove Road                     | JCL Interstate 80          | 05 .     | 141.                                           | 303      | 653                                          | 1406             |  |  |
|                     | Tennessee Street                   | Redwood Barlawov           |          | 100                                            | 229      | 493                                          | 1062             |  |  |
| Admiral Calianhan   | Redwood Partavov                   | Tumor Parkway              |          | -                                              |          |                                              | 102              |  |  |
| Auminal Callaghan   | Turper Parkway                     | Plaza Drivo                | <u> </u> |                                                | 00       | 14/                                          | 310              |  |  |
| Calle               | Plaza Drive                        | Columbus Parkway           |          | <u> </u>                                       | 61       | 129                                          | 209              |  |  |
| Alameda Street      | Titaza Diffe                       | Columbus r arkitay         |          |                                                |          | 1.00                                         | 230              |  |  |
| Amador Street       |                                    | · ·                        |          |                                                | <u> </u> | <u>                                     </u> | 90               |  |  |
| Ascot Parkway       |                                    |                            |          | <u> </u>                                       | 54       | 117                                          | 253              |  |  |
| Benicia Road        |                                    |                            | -        |                                                | <u> </u> | 54                                           | 117              |  |  |
|                     | Mini Drive                         | SR37                       |          | -                                              | 61       | 132                                          | 285              |  |  |
|                     | SR37                               | Tuolumne Street            | -        |                                                |          | 104                                          | 224              |  |  |
|                     | Tuolumne Street                    | Garibaldi Drive            | +        |                                                | 56       | 121                                          | 260              |  |  |
| Broadway            | Garibaldi Drive                    | Sereno Drive               |          | -                                              | 59       | 126                                          | 272              |  |  |
|                     | Sereno Drive                       | Redwood Street             |          |                                                | 51       | 109                                          | 236              |  |  |
|                     | Redwood Street                     | Tennessee Street           |          |                                                |          | 91                                           | 196              |  |  |
|                     | Tennessee Street                   | Ohio Street                |          | -                                              |          | 69                                           | 148              |  |  |
|                     | Interstate 80                      | Admiral Callaghan Lane     | 53       | 115                                            | 248      | 533                                          | 1149             |  |  |
|                     | Admiral Callaghan Lane             | Ascot Parkway              |          | 67                                             | 144      | 310                                          | 667              |  |  |
|                     | Ascot Parkway                      | Redwood Parkway            |          | 61                                             | 132      | 285                                          | 615              |  |  |
|                     | Redwood Parkway                    | Club House Drive           | -        |                                                | 101      | 217                                          | 468              |  |  |
| Columbus Parkway    | Club House Drive                   | Lake Herman Road           |          |                                                | 102      | 220                                          | 4/4              |  |  |
|                     | Lake Heiman Road                   | Ascol Faikway              |          | -                                              |          | 100                                          | 444              |  |  |
| -                   | Springs Road                       | Georgia Street             |          |                                                | 106      | 200                                          | 441              |  |  |
|                     | Georgia Street                     | Recents Park Drive         |          |                                                | 104      | 225                                          | 484              |  |  |
| ł                   | Regents Park Drive                 | Benicia Road               | ~~       |                                                | 104      | 224                                          | 482              |  |  |
| Corcoran Avenue     | Fairgrounds Drive                  | Mini Drive                 |          |                                                |          |                                              | 73               |  |  |
| Couch Street        | Sonoma Boulevard (SR29)            | Broadway                   |          |                                                |          | 62                                           | 134              |  |  |
|                     | Mare Island Way                    | Solano Avenue              |          |                                                | 88       | 189                                          | 406              |  |  |
| Currola Parkway     | Solano Avenue                      | 1-780                      |          |                                                | 104      | 224                                          | 483              |  |  |
|                     | Corcoran Street                    | Borges Lane                |          | **                                             | 59       | 126                                          | 272              |  |  |
| Γ                   | Borges Lane                        | Taper Avenue               |          |                                                | 60       | 130                                          | 280              |  |  |
| . [                 | Taper Avenue                       | Gateway Drive              |          | -                                              | 73       | 158                                          | 341              |  |  |
| Fairgrounds Drive   | Gateway Drive                      | SR37                       |          | -                                              | 79       | 171                                          | 368              |  |  |
| [                   | SR37                               | Marine World Entrance      |          |                                                |          | 79                                           | 170              |  |  |
| Ē                   | Marine World Entrance              | Sereno Drive               |          |                                                |          | 78.                                          | 169              |  |  |
|                     | Sereno Drive                       | Redwood Street             | - ]      |                                                | -        | 54                                           | 116 <sup>.</sup> |  |  |
|                     | Mare Island Way                    | Sonoma Boulevard (SR29)    |          |                                                |          |                                              | 66               |  |  |
| Florida Street      | Sonoma Boulevard (SR29)            | Alameda Street             |          | •••••                                          | • ••     |                                              | 63               |  |  |
| [                   | <ul> <li>Alameda Street</li> </ul> | Solano Avenue              | <u> </u> | -                                              |          |                                              | 93               |  |  |

## Table 2: Future Noise Contours (Page 1 of 3)

| Deadur               | . Segment Limits               |                           | Future L <sub>dn</sub> Contour Distance (feet) |            |                                               |          |       |  |  |
|----------------------|--------------------------------|---------------------------|------------------------------------------------|------------|-----------------------------------------------|----------|-------|--|--|
| Koadway              | From                           | То                        | 80                                             | 75         | 70                                            | 65       | 60    |  |  |
|                      | Santa Clara Street             | Sacramento Street         |                                                |            |                                               |          |       |  |  |
|                      | Sacramento Street              | Marin Street              | -                                              |            |                                               |          | 56    |  |  |
|                      | Marin Street                   | Sonoma Boulevard (SR29)   | -                                              |            |                                               |          |       |  |  |
|                      | Sonoma Boulevard (SR29)        | Alameda Street            |                                                |            |                                               | 59       | 127   |  |  |
|                      | Alameda Street                 | Amador Street             |                                                |            |                                               | 65       | 140   |  |  |
| Georgia Street       | Amador Street                  | Solano Avenue             |                                                |            | <u> </u>                                      | 69       | 148   |  |  |
|                      |                                | Hanla Street              | <u> </u>                                       |            |                                               | 70       | 145   |  |  |
|                      | Maple Street                   | Oskwood Avenue            | 1                                              |            | <del> </del>                                  | 73       | 168   |  |  |
|                      | Oakwood Avenue                 | Rollingwood Drive         |                                                |            |                                               | 62       | 133   |  |  |
|                      | Rollingwood Drive              | Columbus Parkway          | - 1                                            |            | <u>  _ </u>                                   | -        | 93    |  |  |
|                      | Columbus Parkway               | Ascot Parkway             | - 1                                            |            |                                               | -        | 95    |  |  |
|                      | Interstate 780                 | Robles Way                |                                                |            | 56                                            | 120.     | 258   |  |  |
| Gian Cove Parlovay   | Robles Way                     | New Bedford Drive         | · -                                            |            |                                               | 105      | 226   |  |  |
| Giell Cove Faikway   | New Bedford Drive              | South Regatta Drive       |                                                | -          |                                               | 86       | 185   |  |  |
|                      | South Regatta Drive            | end                       |                                                |            | -                                             | 71       | 152   |  |  |
| Glen Cove Road       | Benicia Road                   | Glen Cove Parkway         | <u> </u>                                       |            | <u>                                     </u>  | 73       | 158   |  |  |
| Hiddenbrooke Parkway | Interstate 80                  | Bennington Drive          | <u>                                     </u>   |            |                                               | ļ        | 96    |  |  |
| 1 de llemen Des 1    | Bennington Drive               | Landmark Drive            |                                                |            |                                               |          | 82    |  |  |
| Lake Herman Road     | East of Columbus Parkway       | Sonome Reuleyard (SR20)   | <u> </u>                                       |            | 55                                            | 118      | 255   |  |  |
| Lemon Street         | Sonoma Boulovard (SR20)        | Solionia Boulevard (SR29) |                                                |            | <u>                                      </u> | 59       | 128   |  |  |
| Lemon Gaeet          | Sivth Street                   | Curtola Padoway           |                                                |            |                                               | 57       | 120   |  |  |
|                      | Sonoma Boulevard (SR29)        | 1-80                      |                                                |            |                                               | <u> </u> | 96    |  |  |
| Magazine Street      | 1-80                           | Laurel Street             | <u> </u>                                       | - 1        |                                               | <u> </u> | 69    |  |  |
|                      | Laurel Street                  | City Limits               | -                                              | - 1        |                                               |          | 78    |  |  |
| Mare Island Way      |                                |                           |                                                |            | 89                                            | 191      | 411   |  |  |
|                      | Curtola Parkway                | Maine Street              | - 1                                            | -          |                                               | - 1      | -     |  |  |
| Marin Street         | Maine Street                   | Georgia Street            |                                                | -          |                                               |          | -     |  |  |
| maiai Orect          | Georgia Street                 | Virginia Street           | -                                              |            |                                               |          | 54    |  |  |
|                      | Virginia Street                | Tennessee Street          |                                                |            | -                                             |          | 61    |  |  |
| Meadows Drive        | Sonoma Boulevard (SR29)        | Echo Summit Drive         | . –                                            | -          | -                                             | 62       | 134   |  |  |
|                      | Echo Summit Drive              | Catalina Way              |                                                |            |                                               | 77       | 167   |  |  |
|                      | City Limits                    | Sonoma Boulevaro (SR29)   |                                                |            |                                               | 64       | 13/   |  |  |
| Mini Drive           | Soliona Douevalu (Srz9)        | Corcoran Avenue           |                                                |            |                                               | 00       | 141   |  |  |
|                      | Corcoran Avenue                | SR37                      |                                                | <u>  </u>  |                                               |          | 101   |  |  |
| ···                  | Interstate 80                  | Admiral Callaghan Lane    | _                                              | <u> </u>   | 66                                            | 142      | 305   |  |  |
|                      | Admiral Callaghan Lane         | Oakwood Avenue            | ·                                              |            |                                               | 100      | 216   |  |  |
| Redwood Parkway      | Oakwood Avenue                 | Ascot Parkway             |                                                | -          | -                                             | 99       | 214   |  |  |
|                      | Ascot Parkway                  | Rocky Shore Pl.           | -                                              | -          |                                               | 75.      | 161   |  |  |
|                      | Rocky Shore Pl.                | Columbus Parkway          |                                                |            |                                               | -        | 100   |  |  |
|                      | Sacramento Street              | Sonoma Boulevard (SR29)   | -                                              |            | -                                             | 84       | 181   |  |  |
|                      | Sonoma Boulevard (SR29)        | Couch Street              |                                                | -          |                                               | 89       | . 191 |  |  |
| Redwood Street       | Couch Street                   | Broadway                  |                                                |            |                                               | 98       | 211   |  |  |
| ļ                    | Broadway<br>Valle Viete Avenue | Valle VISta AVenue        |                                                | <u>-</u> - |                                               | 430      | 213   |  |  |
| Rollingwood Drive    | Valle VISta Averiue            |                           |                                                |            | C                                             | 139      | 112   |  |  |
|                      | Maine Street                   | Florida Street            |                                                | <u> </u>   |                                               | - 54     | 66    |  |  |
|                      | Florida Street                 | Tennessee Street          |                                                |            |                                               |          | 102   |  |  |
|                      | Tennessee Street               | Hichborn Street           |                                                |            |                                               | 79       | 170   |  |  |
| Sacramento Street    | Hichborn Street                | Valle Vista Avenue        |                                                |            |                                               | 83       | 180   |  |  |
| ľ                    | Valle Vista Avenue             | Redwood Street            |                                                |            |                                               | 72       | 155   |  |  |
|                      | Redwood Street                 | SR37                      | -                                              |            | -                                             | 55       | 119   |  |  |
| Santa Clara Street   |                                |                           |                                                |            |                                               |          | 58    |  |  |
|                      | Sonoma Boulevard (SR29)        | Broadway                  | _                                              |            |                                               | 64       | 137   |  |  |
| Sereno Drive         | Broadway                       | North Camino Alto         |                                                |            |                                               | 82       | 176   |  |  |
|                      | North Camino Alto              | Tuolumne Street           |                                                | _ <u> </u> |                                               | 67       | 145   |  |  |
|                      | Tuolumne Street                | Fairgrounds Drive         |                                                | -          |                                               |          | 102   |  |  |
| 1                    | Sonoma Boulevard (SR29)        | Fitti Street              |                                                |            |                                               |          | 82    |  |  |
| Solano Avenue        |                                | Paniala Pand              |                                                |            |                                               |          | 02    |  |  |
| · ·                  | Bapiola Posed                  |                           |                                                |            |                                               |          | 100   |  |  |
|                      | Denicia Roau                   | ILIGISIALE OV             |                                                | -          |                                               | 01       | 101   |  |  |

Table 2: Future Noise Contours (Page 2 of 3)

J

City of Vallejo General Plan Nolse Element Update

| Boadway            | Segme                   | nt Limits               | Fu  | ture L <sub>dn</sub> C | Contour D | listance ( | (feet) |
|--------------------|-------------------------|-------------------------|-----|------------------------|-----------|------------|--------|
|                    | From                    | То                      | 80  | 75                     | 70        | 65         | 60     |
| Springe Road       | Interstate 80           | Maple Avenue            | -   |                        |           | 88         | 189    |
| opingsroau         | Maple Avenue            | Columbus Parkway        | - 1 | ·                      | T         | 84         | 180    |
| Steffan Street     | Benicia Road            | Georgia Street          | -   | -                      |           |            | 60     |
|                    | Mare Island Way         | Sonoma Boulevard (SR29) | -   |                        | -         | 98         | 211    |
|                    | Sonoma Boulevard (SR29) | Broadway                | -   |                        | 61        | 131        | 283    |
|                    | Broadway                | Tuolumne Street         |     |                        | 72        | 154        | 332    |
| Tennessee Street   | Tuolumne Street         | Interstate 80           | ·   |                        | 72        | 155        | 334    |
|                    | Interstate 80           | Oakwood Avenue          | -   | ·                      | ·         | 89         | 191    |
|                    | Oakwood Avenue          | Rollingwood Drive       | -   | -                      |           | 64         | 138    |
|                    | Rollingwood Drive       | Columbus Parkway        | -   | -                      | -         | 65         | 141    |
|                    | Broadway                | Walnut Street           | -   | -                      |           | -          | 89     |
|                    | Walnut Street           | Del Mar Avenue          |     | -                      | -         | 74         | 161    |
| Tuolumna Street    | Del Mar Avenue          | Valle Vista Avenue      | 7   | -                      |           | 83         | 180    |
| ruolutime Street   | Valle Vista Avenue      | Nebraska Street         | -   | -                      |           | 57         | 123    |
|                    | Nebraska Street         | Tennessee Street        |     | -                      |           | -          | 98     |
|                    | Tennessee Street        | Solano Avenue           | -   |                        |           | 54         | 116    |
| Turner Parkway     | Admiral Callaghan Lane  | Ascot Parkway           | -   | -                      |           | 98         | 211    |
| rumer rainway      | Ascot Parkway           | East of Ascot Parkway   | -   |                        |           | 79         | 169    |
| Valle Vista Avenue | Sacramento Street       | Sonoma Boulevard (SR29) | -   | -                      | -         | -          | 74     |
| Valie Viate Avenue | Sonoma Boulevard (SR29) | Fairgrounds Drive       | -   |                        | -         | · _        | 82     |
| Wilcon Avenue      | SR37                    | Hichborn Street         | -   |                        |           | 78         | 167    |
| THISON MICHUE      | Hichborn Street         | Tennessee Street        |     | -                      |           | 92         | 199    |

Table 2: Future Noise Contours (Page 3 of 3)

1

| Location                                                | Railroad Ldn Contour Distances (feet) |    |     |     |     |  |  |
|---------------------------------------------------------|---------------------------------------|----|-----|-----|-----|--|--|
|                                                         | 75                                    | 70 | .65 | 60  | 55  |  |  |
| Within 1/4 mile of an at-grade<br>roadway crossing      |                                       |    | 51  | 109 | 235 |  |  |
| Farther than 1/4 mile from an at-grade roadway crossing |                                       |    |     |     | 50  |  |  |

## Table 3: Existing and Future Railroad Noise Contours

ł









City of Vallejo General Plan Noise Element Update









City of Vallejo General Plan Noise Element Update

# **Construction Generated Vibration**

| Vibration Annoyance |                                                                 |                          |     |  |
|---------------------|-----------------------------------------------------------------|--------------------------|-----|--|
| Receptor:           | Average Vibration Level - Home to the East                      | Average Distance (feet): | 290 |  |
|                     | Approximate Reference Velocity                                  | Approximate Velocity     |     |  |
| Equipment           | Level at 25 ft, VdB                                             | Level, VdB               |     |  |
| Vibratory Roller    | 94                                                              | 73                       |     |  |
| Caisson Drill       | 87                                                              | 66                       |     |  |
| Large bulldozer     | 87                                                              | 66                       |     |  |
| Small bulldozer     | 58                                                              | 37                       |     |  |
| Jackhammer          | 79                                                              | 58                       |     |  |
| Loaded trucks       | 86                                                              | 65                       |     |  |
|                     | Criteria                                                        | 78                       |     |  |
| Receptor:           | Average Vibration Level - Homes to the North Across Valle Vista | Average Distance (feet): | 320 |  |
|                     | Approximate Reference Velocity                                  | Approximate Velocity     |     |  |
| Equipment           | Level at 25 ft, VdB                                             | Level, VdB               |     |  |
| Vibratory Roller    | 94                                                              | 72                       |     |  |
| Caisson Drill       | 87                                                              | 65                       |     |  |
| Large bulldozer     | 87                                                              | 65                       |     |  |
| Small bulldozer     | 58                                                              | 36                       |     |  |
| Jackhammer          | 79                                                              | 57                       |     |  |
| Loaded trucks       | 86                                                              | 64                       |     |  |
|                     | Criteria                                                        | 78                       |     |  |
| Receptor:           | Average Vibration Levels - Storage Center to the Southeast      | Average Distance (feet): | 330 |  |
|                     | Approximate Reference Velocity                                  | Approximate Velocity     |     |  |
| Equipment           | Level at 25 ft, VdB                                             | Level, VdB               |     |  |
| Vibratory Roller    | 94                                                              | 72                       |     |  |
| Caisson Drill       | 87                                                              | 65                       |     |  |
| Large bulldozer     | 87                                                              | 65                       |     |  |
| Small bulldozer     | 58                                                              | 36                       |     |  |
| Jackhammer          | 79                                                              | 57                       |     |  |
| Loaded trucks       | 86                                                              | 64                       |     |  |
|                     | Criteria                                                        | 78                       |     |  |

## **Construction Generated Vibration**

Vibration Structural Damage

| Maximum Vibration Levels - Home to the East                      | Closest Distance (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approximate Reference                                            | Approximate RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RMS Velocity at 25 ft,                                           | Velocity Level,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| inch/second                                                      | inch/second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.210                                                            | 0.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.089                                                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.089                                                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.003                                                            | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.035                                                            | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.076                                                            | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Criteria                                                         | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ximum Vibration Levels - Homes to the North Across Valle Vista A | Closest Distance (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Approximate Reference                                            | Approximate RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RMS Velocity at 25 ft,                                           | Velocity Level,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| inch/second                                                      | inch/second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.210                                                            | 0.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.089                                                            | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.089                                                            | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.003                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.035                                                            | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.076                                                            | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Criteria                                                         | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Maximum Vibration Levels - Outpatient Facility to the East       | Closest Distance (feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Approximate Reference                                            | Approximate RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RMS Velocity at 25 ft,                                           | Velocity Level,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| inch/second                                                      | inch/second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.210                                                            | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.089                                                            | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.089                                                            | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.003                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.035                                                            | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.076                                                            | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Criteria                                                         | 0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  | Maximum Vibration Levels - Home to the East         Approximate Reference<br>RMS Velocity at 25 ft,<br>inch/second         0.210         0.089         0.003         0.003         0.003         0.003         0.003         0.076         Criteria         Iximum Vibration Levels - Homes to the North Across Valle Vista A         Approximate Reference<br>RMS Velocity at 25 ft,<br>inch/second         0.210         0.089         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.004         0.005         0.076         Criteria         0.089         0.089         0.089         0.089         0.089         0.089         0.089         0.003         0.035         0.035         0.0036         0.076 <td>Maximum Vibration Levels - Home to the East         Closest Distance (reet):           Approximate RMS Velocity at 25 ft,<br/>inch/second         Velocity Level,<br/>inch/second           0.210         0.074           0.089         0.031           0.003         0.001           0.076         0.027           Criteria         0.200           ximum Vibration Levels - Homes to the North Across Valle Vista /         Closest Distance (feet):           Approximate Reference<br/>RMS Velocity at 25 ft,<br/>inch/second         Closest Distance (feet):           0.0210         0.031           0.089         0.031           0.089         0.031           0.089         0.013           0.089         0.013           0.089         0.013           0.089         0.013           0.089         0.013           0.003         0.000           0.076         0.011           Criteria         0.200           Maximum Vibration Levels - Outpatient Facility to the East         Closest Distance (feet):           Approximate Reference<br/>RMS Velocity at 25 ft,<br/>inch/second         Approximate RMS<br/>Velocity Level,<br/>inch/second           0.011         0.018         0.008           0.020         0.018         0.008</td> | Maximum Vibration Levels - Home to the East         Closest Distance (reet):           Approximate RMS Velocity at 25 ft,<br>inch/second         Velocity Level,<br>inch/second           0.210         0.074           0.089         0.031           0.003         0.001           0.076         0.027           Criteria         0.200           ximum Vibration Levels - Homes to the North Across Valle Vista /         Closest Distance (feet):           Approximate Reference<br>RMS Velocity at 25 ft,<br>inch/second         Closest Distance (feet):           0.0210         0.031           0.089         0.031           0.089         0.031           0.089         0.013           0.089         0.013           0.089         0.013           0.089         0.013           0.089         0.013           0.003         0.000           0.076         0.011           Criteria         0.200           Maximum Vibration Levels - Outpatient Facility to the East         Closest Distance (feet):           Approximate Reference<br>RMS Velocity at 25 ft,<br>inch/second         Approximate RMS<br>Velocity Level,<br>inch/second           0.011         0.018         0.008           0.020         0.018         0.008 |

<sup>1.</sup> Determined based on use of jackhammers or pneumatic hammers that may be used for pavement demolition at a distance of 25 feet

Notes: RMS velocity calculated from vibration level (VdB) using the reference of one microinch/second.

Source: Based on methodology from the United States Department of Transportation Federal Transit Administration, Transit Noise and Vibration Impact Assessment (2006).

| ANALYST | ROAD<br>CLASSIFICATION | SPEED | LANE<br>DISTANCE |
|---------|------------------------|-------|------------------|
| AW      | 2U                     | 40    | 12               |
|         | 4U                     | 40    | 36               |
|         | 4D                     | 45    | 48               |
|         | 6D                     | 45    | 84               |
|         | 2D                     | 40    | 24               |

| 73.6  | 75.88% |
|-------|--------|
| 13.6  | 14.02% |
| 10.22 | 10.54% |

| VEHICLE MIX INPUTS |        |         |       |  |  |  |  |
|--------------------|--------|---------|-------|--|--|--|--|
| DAILY              |        | HOURLY  |       |  |  |  |  |
| % A                | 97.00% | DAY     | 75.5% |  |  |  |  |
| % MT               | 2.00%  | EVENING | 14.0% |  |  |  |  |
| % HT               | 1.00%  | NIGHT   | 10.5% |  |  |  |  |

We have different values from the client/traffic study, is it ok to change th

Source: Riverside, County of, Department of Public Health, Office of Industrial Hygiene. 2009, November. For Determining and Mit Riverside County Fleet Mix: Secondary, Collectors, or Smaller

| /ehicle Overall % | Day (7 AM to Evening (7 Night (10 PM to 7 AM) |
|-------------------|-----------------------------------------------|
|-------------------|-----------------------------------------------|

| Auto         | 97% | 73.60 | 13.60 | 10.22 |
|--------------|-----|-------|-------|-------|
| Medium Truck | 2%  | 0.90  | 0.04  | 0.90  |
| Heavy Truck  | 1%  | 0.35  | 0.04  | 0.35  |
|              |     | 74.85 | 13.68 | 11.47 |

## Vall-02 Caliber School

## **EXISTING NO PROJECT 2015**

|    |             |                        |        | POSTED |          |           |       |       |
|----|-------------|------------------------|--------|--------|----------|-----------|-------|-------|
|    |             |                        |        | SPEED  | LANE     | SITE      |       | GRADE |
| #  | ROADWAY     | SEGMENT                | ADT    | LIMIT  | DISTANCE | CONDITION | LANES | (%)   |
| 1  | Nebraska    | Sonoma to Broadway     | 2,820  | 40     | 24       | Soft      | 2D    | 0%    |
| 2  | Valle Vista | Sonoma to Couch        | 3,940  | 40     | 24       | Soft      | 2D    | 0%    |
| 3  | Valle Vista | Couch to Napa          | 3,480  | 40     | 24       | Soft      | 2D    | 0%    |
| 4  | Valle Vista | Napa to Broadway       | 3,480  | 40     | 24       | soft      | 2D    | 0%    |
| 5  | Oregon      | Napa to Broadway       | 390    | 45     | 48       | Soft      | 4D    | 0%    |
| 6  | Redwood     | Sonoma to Couch        | 13,710 | 45     | 48       | Soft      | 4D    | 0%    |
| 7  | Redwood     | Couch to Broadway      | 13,900 | 45     | 48       | Soft      | 4D    | 0%    |
| 8  | Sonoma      | Redwood to Valle Vista | 16,520 | 45     | 84       | Soft      | 6D    | 0%    |
| 9  | Sonoma      | Valle Vista to Couch   | 14,900 | 45     | 84       | Soft      | 6D    | 0%    |
| 10 | Sonoma      | Couch to Nebraska      | 17,410 | 45     | 48       | Soft      | 4D    | 0%    |
| 11 | Couch       | Redwood to Valle Vista | 5,400  | 45     | 48       | Soft      | 4D    | 0%    |
| 12 | Couch       | Valle Vista to Sonoma  | 5,060  | 45     | 48       | Soft      | 4D    | 0%    |
| 13 | Broadway    | Redwood to Valle Vista | 11,920 | 45     | 48       | Soft      | 4D    | 0%    |
| 14 | Broadway    | Valle Vista to Oregon  | 12,920 | 45     | 48       | Soft      | 4D    | 0%    |
| 15 | Broadway    | Oregon to Nebraska     | 12,930 | 45     | 48       | Soft      | 4D    | 0%    |

## Vall-02 Caliber School EXISTING NO PROJECT 2015 CONDITIONS NOISE CONTOURS RESULT SUMMARY TABLE

|    |             |                        |         |           | DISTACE TO | NOISE CON | TOUR (FT.) |
|----|-------------|------------------------|---------|-----------|------------|-----------|------------|
|    |             |                        | TRAFIC  | LEVEL     | 70         | 65        | 60         |
| #  | ROADWAY     | SEGMENT                | VOLUMES | AT 50 FT. | dBA CNEL   | dBA CNEL  | dBA CNEL   |
| 1  | Nebraska    | Sonoma to Broadway     | 2,820   | 61.7      | 14         | 30        | 65         |
| 2  | Valle Vista | Sonoma to Couch        | 3,940   | 63.1      | 17         | 38        | 81         |
| 3  | Valle Vista | Couch to Napa          | 3,480   | 62.6      | 16         | 35        | 75         |
| 4  | Valle Vista | Napa to Broadway       | 3,480   | 62.6      | 16         | 35        | 75         |
| 5  | Oregon      | Napa to Broadway       | 390     | 55.0      | 5          | 11        | 23         |
| 6  | Redwood     | Sonoma to Couch        | 13,710  | 70.5      | 54         | 116       | 249        |
| 7  | Redwood     | Couch to Broadway      | 13,900  | 70.5      | 54         | 117       | 251        |
| 8  | Sonoma      | Redwood to Valle Vista | 16,520  | 74.4      | 98         | 212       | 456        |
| 9  | Sonoma      | Valle Vista to Couch   | 14,900  | 74.0      | 92         | 198       | 426        |
| 10 | Sonoma      | Couch to Nebraska      | 17,410  | 71.5      | 63         | 136       | 292        |
| 11 | Couch       | Redwood to Valle Vista | 5,400   | 66.4      | 29         | 62        | 134        |
| 12 | Couch       | Valle Vista to Sonoma  | 5,060   | 66.1      | 28         | 59        | 128        |
| 13 | Broadway    | Redwood to Valle Vista | 11,920  | 69.9      | 49         | 105       | 227        |
| 14 | Broadway    | Valle Vista to Oregon  | 12,920  | 70.2      | 52         | 111       | 239        |
| 15 | Broadway    | Oregon to Nebraska     | 12,930  | 70.2      | 52         | 111       | 240        |

## Vall-02 Caliber School

## Near-Term Future 2018

|    |             |                        |        | POSTED<br>SPEED |          | SITE      |       | GRADE |
|----|-------------|------------------------|--------|-----------------|----------|-----------|-------|-------|
| #  | ROADWAY     | SEGMENT                | ADT    | LIMIT           | DISTANCE | CONDITION | LANES | (%)   |
| 1  | Nebraska    | Sonoma to Broadway     | 2,800  | 40              | 24       | Soft      | 2D    | 0%    |
| 2  | Valle Vista | Sonoma to Couch        | 4,620  | 40              | 24       | Soft      | 2D    | 0%    |
| 3  | Valle Vista | Couch to Napa          | 4,070  | 40              | 24       | Soft      | 2D    | 0%    |
| 4  | Valle Vista | Napa to Broadway       | 3,970  | 40              | 24       | soft      | 2D    | 0%    |
| 5  | Oregon      | Napa to Broadway       | 540    | 45              | 48       | Soft      | 4D    | 0%    |
| 6  | Redwood     | Sonoma to Couch        | 14,320 | 45              | 48       | Soft      | 4D    | 0%    |
| 7  | Redwood     | Couch to Broadway      | 14,530 | 45              | 48       | Soft      | 4D    | 0%    |
| 8  | Sonoma      | Redwood to Valle Vista | 17,660 | 45              | 84       | Soft      | 6D    | 0%    |
| 9  | Sonoma      | Valle Vista to Couch   | 15,790 | 45              | 84       | Soft      | 6D    | 0%    |
| 10 | Sonoma      | Couch to Nebraska      | 18,550 | 45              | 48       | Soft      | 4D    | 0%    |
| 11 | Couch       | Redwood to Valle Vista | 5,780  | 45              | 48       | Soft      | 4D    | 0%    |
| 12 | Couch       | Valle Vista to Sonoma  | 6,180  | 45              | 48       | Soft      | 4D    | 0%    |
| 13 | Broadway    | Redwood to Valle Vista | 16,120 | 45              | 48       | Soft      | 4D    | 0%    |
| 14 | Broadway    | Valle Vista to Oregon  | 13,570 | 45              | 48       | Soft      | 4D    | 0%    |
| 15 | Broadway    | Oregon to Nebraska     | 13,580 | 45              | 48       | Soft      | 4D    | 0%    |
| 16 |             |                        |        |                 | #N/A     | Soft      |       | 0%    |

| ANALYST | ROAD<br>CLASSIFICATION | SPEED | LANE<br>DISTANCE |
|---------|------------------------|-------|------------------|
| AW      | 2U                     | 40    | 12               |
|         | 4U                     | 40    | 36               |
|         | 4D                     | 45    | 48               |
|         | 6D                     | 45    | 84               |
|         | 2D                     | 40    | 24               |

| 73.6  | 75.88% |
|-------|--------|
| 13.6  | 14.02% |
| 10.22 | 10.54% |

| VEHICLE MIX INPUTS |        |         |       |  |  |  |
|--------------------|--------|---------|-------|--|--|--|
| DAILY              |        | HOURLY  |       |  |  |  |
| % A                | 97.00% | DAY     | 75.5% |  |  |  |
| % MT               | 2.00%  | EVENING | 14.0% |  |  |  |
| % HT               | 1.00%  | NIGHT   | 10.5% |  |  |  |

We have different values from the client/traffic study, is it ok to change th

Source: Riverside, County of, Department of Public Health, Office of Industrial Hygiene. 2009, November. For Determining and Mit Riverside County Fleet Mix: Secondary, Collectors, or Smaller

| /ehicle Overall % | Day (7 AM to Evening (7 Night (10 PM to 7 AM) |
|-------------------|-----------------------------------------------|
|-------------------|-----------------------------------------------|

| Auto         | 97% | 73.60 | 13.60 | 10.22 |
|--------------|-----|-------|-------|-------|
| Medium Truck | 2%  | 0.90  | 0.04  | 0.90  |
| Heavy Truck  | 1%  | 0.35  | 0.04  | 0.35  |
|              |     | 74.85 | 13.68 | 11.47 |

## Vall-02 Caliber School Near-Term Future 2018 CONDITIONS NOISE CONTOURS RESULT SUMMARY TABLE

|    |             |                        |         |           | DISTACE TO NOISE CONTOUR (FT.) |          |          |
|----|-------------|------------------------|---------|-----------|--------------------------------|----------|----------|
|    |             |                        | TRAFIC  | LEVEL     | 70                             | 65       | 60       |
| #  | ROADWAY     | SEGMENT                | VOLUMES | AT 50 FT. | dBA CNEL                       | dBA CNEL | dBA CNEL |
| 1  | Nebraska    | Sonoma to Broadway     | 2,800   | 61.7      | 14                             | 30       | 65       |
| 2  | Valle Vista | Sonoma to Couch        | 4,620   | 63.8      | 19                             | 42       | 90       |
| 3  | Valle Vista | Couch to Napa          | 4,070   | 63.3      | 18                             | 38       | 83       |
| 4  | Valle Vista | Napa to Broadway       | 3,970   | 63.2      | 18                             | 38       | 81       |
| 5  | Oregon      | Napa to Broadway       | 540     | 56.4      | 6                              | 13       | 29       |
| 6  | Redwood     | Sonoma to Couch        | 14,320  | 70.6      | 55                             | 119      | 256      |
| 7  | Redwood     | Couch to Broadway      | 14,530  | 70.7      | 56                             | 120      | 259      |
| 8  | Sonoma      | Redwood to Valle Vista | 17,660  | 74.7      | 103                            | 221      | 477      |
| 9  | Sonoma      | Valle Vista to Couch   | 15,790  | 74.2      | 95                             | 205      | 442      |
| 10 | Sonoma      | Couch to Nebraska      | 18,550  | 71.8      | 66                             | 141      | 305      |
| 11 | Couch       | Redwood to Valle Vista | 5,780   | 66.7      | 30                             | 65       | 140      |
| 12 | Couch       | Valle Vista to Sonoma  | 6,180   | 67.0      | 32                             | 68       | 146      |
| 13 | Broadway    | Redwood to Valle Vista | 16,120  | 71.2      | 60                             | 129      | 277      |
| 14 | Broadway    | Valle Vista to Oregon  | 13,570  | 70.4      | 53                             | 115      | 247      |
| 15 | Broadway    | Oregon to Nebraska     | 13,580  | 70.4      | 53                             | 115      | 247      |

## Vall-02 Caliber School

## Near-Term Future Plus Project 2018

|    |             |                        |        | POSTED |          | 0.75      |       |       |
|----|-------------|------------------------|--------|--------|----------|-----------|-------|-------|
|    |             |                        |        | SPEED  | LANE     | SILE      |       | GRADE |
| #  | ROADWAY     | SEGMENT                | ADT    | LIMIT  | DISTANCE | CONDITION | LANES | (%)   |
| 1  | Nebraska    | Sonoma to Broadway     | 3,350  | 40     | 24       | Soft      | 2D    | 0%    |
| 2  | Valle Vista | Sonoma to Couch        | 4,760  | 40     | 24       | Soft      | 2D    | 0%    |
| 3  | Valle Vista | Couch to Napa          | 4,500  | 40     | 24       | Soft      | 2D    | 0%    |
| 4  | Valle Vista | Napa to Broadway       | 4,770  | 40     | 24       | soft      | 2D    | 0%    |
| 5  | Oregon      | Napa to Broadway       | 930    | 45     | 48       | Soft      | 4D    | 0%    |
| 6  | Redwood     | Sonoma to Couch        | 14,610 | 45     | 48       | Soft      | 4D    | 0%    |
| 7  | Redwood     | Couch to Broadway      | 14,830 | 45     | 48       | Soft      | 4D    | 0%    |
| 8  | Sonoma      | Redwood to Valle Vista | 18,030 | 45     | 84       | Soft      | 6D    | 0%    |
| 9  | Sonoma      | Valle Vista to Couch   | 16,110 | 45     | 84       | Soft      | 6D    | 0%    |
| 10 | Sonoma      | Couch to Nebraska      | 19,180 | 45     | 48       | Soft      | 4D    | 0%    |
| 11 | Couch       | Redwood to Valle Vista | 5,900  | 45     | 48       | Soft      | 4D    | 0%    |
| 12 | Couch       | Valle Vista to Sonoma  | 6,070  | 45     | 48       | Soft      | 4D    | 0%    |
| 13 | Broadway    | Redwood to Valle Vista | 12,890 | 45     | 48       | Soft      | 4D    | 0%    |
| 14 | Broadway    | Valle Vista to Oregon  | 14,590 | 45     | 48       | Soft      | 4D    | 0%    |
| 15 | Broadway    | Oregon to Nebraska     | 14,130 | 45     | 48       | Soft      | 4D    | 0%    |

| ANALYST | ROAD<br>CLASSIFICATION | SPEED | LANE<br>DISTANCE |
|---------|------------------------|-------|------------------|
| AW      | 2U                     | 40    | 12               |
|         | 4U                     | 40    | 36               |
|         | 4D                     | 45    | 48               |
|         | 6D                     | 45    | 84               |
|         | 2D                     | 40    | 24               |

| 73.6  | 75.88% |
|-------|--------|
| 13.6  | 14.02% |
| 10.22 | 10.54% |

| VEHICLE MIX INPUTS |        |         |       |  |  |  |
|--------------------|--------|---------|-------|--|--|--|
| DAILY              |        | HOURLY  |       |  |  |  |
| % A                | 97.00% | DAY     | 75.5% |  |  |  |
| % MT               | 2.00%  | EVENING | 14.0% |  |  |  |
| % HT               | 1.00%  | NIGHT   | 10.5% |  |  |  |

We have different values from the client/traffic study, is it ok to change these?

Source: Riverside, County of, Department of Public Health, Office of Industrial Hygiene. 2009, November. For Determining and Mitigating Traf Riverside County Fleet Mix: Secondary, Collectors, or Smaller

| Venicle Overall % Day (7 AM to Evening (7 Night (10 PM to 7 AM | √ehicle | Overall % | Day (7 AM to Evening (7 | 7 Night (10 | PM to 7 | AM) |
|----------------------------------------------------------------|---------|-----------|-------------------------|-------------|---------|-----|
|----------------------------------------------------------------|---------|-----------|-------------------------|-------------|---------|-----|

| Auto         | 97% | 73.60 | 13.60 | 10.22 |
|--------------|-----|-------|-------|-------|
| Medium Truck | 2%  | 0.90  | 0.04  | 0.90  |
| Heavy Truck  | 1%  | 0.35  | 0.04  | 0.35  |
|              |     | 74.85 | 13.68 | 11.47 |

## Vall-02 Caliber School -Term Future Plus Project 2018 CONDITIONS NOISE CONTOURS RESULT SUMMARY TABLE

|    |             |                        |         |           | DISTACE TO | NOISE CON | TOUR (FT.) |
|----|-------------|------------------------|---------|-----------|------------|-----------|------------|
|    |             |                        | TRAFIC  | LEVEL     | 70         | 65        | 60         |
| #  | ROADWAY     | SEGMENT                | VOLUMES | AT 50 FT. | dBA CNEL   | dBA CNEL  | dBA CNEL   |
| 1  | Nebraska    | Sonoma to Broadway     | 3,350   | 62.4      | 16         | 34        | 73         |
| 2  | Valle Vista | Sonoma to Couch        | 4,760   | 64.0      | 20         | 43        | 92         |
| 3  | Valle Vista | Couch to Napa          | 4,500   | 63.7      | 19         | 41        | 89         |
| 4  | Valle Vista | Napa to Broadway       | 4,770   | 64.0      | 20         | 43        | 92         |
| 5  | Oregon      | Napa to Broadway       | 930     | 58.8      | 9          | 19        | 41         |
| 6  | Redwood     | Sonoma to Couch        | 14,610  | 70.7      | 56         | 121       | 260        |
| 7  | Redwood     | Couch to Broadway      | 14,830  | 70.8      | 57         | 122       | 262        |
| 8  | Sonoma      | Redwood to Valle Vista | 18,030  | 74.8      | 104        | 224       | 483        |
| 9  | Sonoma      | Valle Vista to Couch   | 16,110  | 74.3      | 97         | 208       | 448        |
| 10 | Sonoma      | Couch to Nebraska      | 19,180  | 71.9      | 67         | 145       | 312        |
| 11 | Couch       | Redwood to Valle Vista | 5,900   | 66.8      | 31         | 66        | 142        |
| 12 | Couch       | Valle Vista to Sonoma  | 6,070   | 66.9      | 31         | 67        | 145        |
| 13 | Broadway    | Redwood to Valle Vista | 12,890  | 70.2      | 51         | 111       | 239        |
| 14 | Broadway    | Valle Vista to Oregon  | 14,590  | 70.7      | 56         | 120       | 260        |
| 15 | Broadway    | Oregon to Nebraska     | 14,130  | 70.6      | 55         | 118       | 254        |

## Noise Contours for Existing No Project Conditions

|             |                        |                          | Noise level              | Distance to noise contour (feet) |                |                |  |
|-------------|------------------------|--------------------------|--------------------------|----------------------------------|----------------|----------------|--|
| Roadway     | Segment                | Daily Traffic<br>Volumes | at 50 feet<br>(dBA CNEL) | 70<br>dBA CNEL                   | 65<br>dBA CNEL | 60<br>dBA CNEL |  |
| Nebraska    | Sonoma to Broadway     | 2,820                    | 61.7                     | 14                               | 30             | 65             |  |
| Valle Vista | Sonoma to Couch        | 3,940                    | 63.1                     | 17                               | 38             | 81             |  |
| Valle Vista | Couch to Napa          | 3,480                    | 62.6                     | 16                               | 35             | 75             |  |
| Valle Vista | Napa to Broadway       | 3,480                    | 62.6                     | 16                               | 35             | 75             |  |
| Oregon      | Napa to Broadway       | 390                      | 55.0                     | 5                                | 11             | 23             |  |
| Redwood     | Sonoma to Couch        | 13,710                   | 70.5                     | 54                               | 116            | 249            |  |
| Redwood     | Couch to Broadway      | 13,900                   | 70.5                     | 54                               | 117            | 251            |  |
| Sonoma      | Redwood to Valle Vista | 16,520                   | 74.4                     | 98                               | 212            | 456            |  |
| Sonoma      | Valle Vista to Couch   | 14,900                   | 74.0                     | 92                               | 198            | 426            |  |
| Sonoma      | Couch to Nebraska      | 17,410                   | 71.5                     | 63                               | 136            | 292            |  |
| Couch       | Redwood to Valle Vista | 5,400                    | 66.4                     | 29                               | 62             | 134            |  |
| Couch       | Valle Vista to Sonoma  | 5,060                    | 66.1                     | 28                               | 59             | 128            |  |
| Broadway    | Redwood to Valle Vista | 11,920                   | 69.9                     | 49                               | 105            | 227            |  |
| Broadway    | Valle Vista to Oregon  | 12,920                   | 70.2                     | 52                               | 111            | 239            |  |
| Broadway    | Oregon to Nebraska     | 12,930                   | 70.2                     | 52                               | 111            | 240            |  |

## **Noise Contours for No Project Conditions**

|             |                        |                          | Noise level              | Distance to noise contour (feet) |                |                |  |
|-------------|------------------------|--------------------------|--------------------------|----------------------------------|----------------|----------------|--|
| Roadway     | Segment                | Daily Traffic<br>Volumes | at 50 feet<br>(dBA CNEL) | 70<br>dBA CNEL                   | 65<br>dBA CNEL | 60<br>dBA CNEL |  |
| Nebraska    | Sonoma to Broadway     | 2,800                    | 61.7                     | 14                               | 30             | 65             |  |
| Valle Vista | Sonoma to Couch        | 4,620                    | 63.8                     | 19                               | 42             | 90             |  |
| Valle Vista | Couch to Napa          | 4,070                    | 63.3                     | 18                               | 38             | 83             |  |
| Valle Vista | Napa to Broadway       | 3,970                    | 63.2                     | 18                               | 38             | 81             |  |
| Oregon      | Napa to Broadway       | 540                      | 56.4                     | 6                                | 13             | 29             |  |
| Redwood     | Sonoma to Couch        | 14,320                   | 70.6                     | 55                               | 119            | 256            |  |
| Redwood     | Couch to Broadway      | 14,530                   | 70.7                     | 56                               | 120            | 259            |  |
| Sonoma      | Redwood to Valle Vista | 17,660                   | 74.7                     | 103                              | 221            | 477            |  |
| Sonoma      | Valle Vista to Couch   | 15,790                   | 74.2                     | 95                               | 205            | 442            |  |
| Sonoma      | Couch to Nebraska      | 18,550                   | 71.8                     | 66                               | 141            | 305            |  |
| Couch       | Redwood to Valle Vista | 5,780                    | 66.7                     | 30                               | 65             | 140            |  |
| Couch       | Valle Vista to Sonoma  | 6,180                    | 67.0                     | 32                               | 68             | 146            |  |
| Broadway    | Redwood to Valle Vista | 16,120                   | 71.2                     | 60                               | 129            | 277            |  |
| Broadway    | Valle Vista to Oregon  | 13,570                   | 70.4                     | 53                               | 115            | 247            |  |
| Broadway    | Oregon to Nebraska     | 13,580                   | 70.4                     | 53                               | 115            | 247            |  |

## Noise Contours for Existing Plus Project Conditions

|             |                        |                          | Noise level              | Distance to noise cor |                | our (feet)     |
|-------------|------------------------|--------------------------|--------------------------|-----------------------|----------------|----------------|
| Roadway     | Segment                | Daily Traffic<br>Volumes | at 50 feet<br>(dBA CNEL) | 70<br>dBA CNEL        | 65<br>dBA CNEL | 60<br>dBA CNEL |
| Nebraska    | Sonoma to Broadway     | 3,350                    | 62.4                     | 16                    | 34             | 73             |
| Valle Vista | Sonoma to Couch        | 4,760                    | 64.0                     | 20                    | 43             | 92             |
| Valle Vista | Couch to Napa          | 4,500                    | 63.7                     | 19                    | 41             | 89             |
| Valle Vista | Napa to Broadway       | 4,770                    | 64.0                     | 20                    | 43             | 92             |
| Oregon      | Napa to Broadway       | 930                      | 58.8                     | 9                     | 19             | 41             |
| Redwood     | Sonoma to Couch        | 14,610                   | 70.7                     | 56                    | 121            | 260            |
| Redwood     | Couch to Broadway      | 14,830                   | 70.8                     | 57                    | 122            | 262            |
| Sonoma      | Redwood to Valle Vista | 18,030                   | 74.8                     | 104                   | 224            | 483            |
| Sonoma      | Valle Vista to Couch   | 16,110                   | 74.3                     | 97                    | 208            | 448            |
| Sonoma      | Couch to Nebraska      | 19,180                   | 71.9                     | 67                    | 145            | 312            |
| Couch       | Redwood to Valle Vista | 5,900                    | 66.8                     | 31                    | 66             | 142            |
| Couch       | Valle Vista to Sonoma  | 6,070                    | 66.9                     | 31                    | 67             | 145            |
| Broadway    | Redwood to Valle Vista | 12,890                   | 70.2                     | 51                    | 111            | 239            |
| Broadway    | Valle Vista to Oregon  | 14,590                   | 70.7                     | 56                    | 120            | 260            |
| Broadway    | Oregon to Nebraska     | 14,130                   | 70.6                     | 55                    | 118            | 254            |

| Project | Conribution | 2018 |
|---------|-------------|------|
|         |             |      |

|             |                        | CNEL at 50 feet (dBA) |              |                         |                      |  |
|-------------|------------------------|-----------------------|--------------|-------------------------|----------------------|--|
| Roadway     | Segment                | No Project            | With Project | Project<br>Contribution | Potential<br>Impact? |  |
| Nebraska    | Sonoma to Broadway     | 61.7                  | 62.4         | 0.7                     | no                   |  |
| Valle Vista | Sonoma to Couch        | 63.8                  | 64.0         | 0.2                     | no                   |  |
| Valle Vista | Couch to Napa          | 63.3                  | 63.7         | 0.4                     | no                   |  |
| Valle Vista | Napa to Broadway       | 63.2                  | 64.0         | 0.8                     | no                   |  |
| Oregon      | Napa to Broadway       | 56.4                  | 58.8         | 2.4                     | no                   |  |
| Redwood     | Sonoma to Couch        | 70.6                  | 70.7         | 0.1                     | no                   |  |
| Redwood     | Couch to Broadway      | 70.7                  | 70.8         | 0.1                     | no                   |  |
| Sonoma      | Redwood to Valle Vista | 74.7                  | 74.8         | 0.1                     | no                   |  |
| Sonoma      | Valle Vista to Couch   | 74.2                  | 74.3         | 0.1                     | no                   |  |
| Sonoma      | Couch to Nebraska      | 71.8                  | 71.9         | 0.1                     | no                   |  |
| Couch       | Redwood to Valle Vista | 66.7                  | 66.8         | 0.1                     | no                   |  |
| Couch       | Valle Vista to Sonoma  | 67.0                  | 66.9         | -0.1                    | no                   |  |
| Broadway    | Redwood to Valle Vista | 71.2                  | 70.2         | -1.0                    | no                   |  |
| Broadway    | Valle Vista to Oregon  | 70.4                  | 70.7         | 0.3                     | no                   |  |
| Broadway    | Oregon to Nebraska     | 70.4                  | 70.6         | 0.2                     | no                   |  |

Overall Project Off-Site Contributions

|             |                        | CNEL at 50 feet (dBA) |                     |                                     |                         |                   |                      |
|-------------|------------------------|-----------------------|---------------------|-------------------------------------|-------------------------|-------------------|----------------------|
| Roadway     | Segment                | Existing              | Near-Term<br>Future | Near Term<br>Future with<br>Project | Project<br>Contribution | Overall<br>Impact | Potential<br>Impact? |
| Nebraska    | Sonoma to Broadway     | 61.7                  | 61.7                | 62.4                                | 0.8                     | 0.7               | no                   |
| Valle Vista | Sonoma to Couch        | 63.1                  | 63.8                | 64.0                                | 0.1                     | 0.8               | no                   |
| Valle Vista | Couch to Napa          | 62.6                  | 63.3                | 63.7                                | 0.4                     | 1.1               | no                   |
| Valle Vista | Napa to Broadway       | 62.6                  | 63.2                | 64.0                                | 0.8                     | 1.4               | no                   |
| Oregon      | Napa to Broadway       | 55.0                  | 56.4                | 58.8                                | 2.4                     | 3.8               | yes                  |
| Redwood     | Sonoma to Couch        | 70.5                  | 70.6                | 70.7                                | 0.1                     | 0.3               | no                   |
| Redwood     | Couch to Broadway      | 70.5                  | 70.7                | 70.8                                | 0.1                     | 0.3               | no                   |
| Sonoma      | Redwood to Valle Vista | 74.4                  | 74.7                | 74.8                                | 0.1                     | 0.4               | no                   |
| Sonoma      | Valle Vista to Couch   | 74.0                  | 74.2                | 74.3                                | 0.1                     | 0.3               | no                   |
| Sonoma      | Couch to Nebraska      | 71.5                  | 71.8                | 71.9                                | 0.1                     | 0.4               | no                   |
| Couch       | Redwood to Valle Vista | 66.4                  | 66.7                | 66.8                                | 0.1                     | 0.4               | no                   |
| Couch       | Valle Vista to Sonoma  | 66.1                  | 67.0                | 66.9                                | -0.1                    | 0.8               | no                   |
| Broadway    | Redwood to Valle Vista | 69.9                  | 71.2                | 70.2                                | -1.0                    | 0.3               | no                   |
| Broadway    | Valle Vista to Oregon  | 70.2                  | 70.4                | 70.7                                | 0.3                     | 0.5               | no                   |
| Broadway    | Oregon to Nebraska     | 70.2                  | 70.4                | 70.6                                | 0.2                     | 0.4               | no                   |

## Roadway Construction Noise Model (RCNM), Version 1.1

| Report dat: #########<br>Case Descr Demoliton   |                     |                  |             |                |       |             |          |           |   |
|-------------------------------------------------|---------------------|------------------|-------------|----------------|-------|-------------|----------|-----------|---|
|                                                 |                     |                  |             | Rec            | epto  | or #1       |          |           |   |
| <b>-</b> · · · · · · · · · · · · · · · · · · ·  | Baselines (         | dBA)             |             |                |       |             |          |           |   |
| Descriptior Land Use<br>Residence : Residential | Daytime 55          | Evening          | 55          | Night          | 55    |             |          |           |   |
|                                                 | 55                  |                  | 55          |                | 55    |             |          |           |   |
|                                                 |                     |                  |             | Equipm         | ent   |             |          |           |   |
|                                                 | 1                   |                  |             | Spec           |       | Actual      | Receptor | Estimate  | d |
| Deservicetien                                   | Impact              | 11(0             | $\sim$      |                |       |             | Distance | Shielding |   |
| Description                                     | Device              | Usage(%          | 6)<br>40    | (ава)          | 01    | (ава)       | (Teet)   | (ава)     | ^ |
| Tractor                                         | NU                  |                  | 40          |                | 04    |             | 103      |           | 0 |
|                                                 |                     |                  |             | Results        |       |             |          |           |   |
|                                                 | Calculated          | (dBA)            |             |                |       | Noise Limit | s (dBA)  |           |   |
|                                                 |                     |                  |             | Day            |       |             | Evening  |           |   |
| Equipment                                       | *Lmax               | Leq              |             | Lmax           |       | Leq         | Lmax     | Leq       |   |
| Tractor                                         | /2.6                | 6                | 8.7         | N/A            |       | N/A         | N/A      | N/A       |   |
| lotal                                           | /2.6<br>*Calculater | 60<br>A I max is | 8./<br>:the | N/A<br>> Loude | st va | N/A<br>alue | N/A      | N/A       |   |
|                                                 | Calculated          |                  |             | Louue          |       |             |          |           |   |
|                                                 |                     |                  |             | Rec            | epto  | or #2       |          |           |   |
|                                                 | Baselines (         | dBA)             |             |                |       |             |          |           |   |
| Descriptior Land Use                            | Daytime             | Evening          |             | Night          |       |             |          |           |   |
| Homes Acr Residential                           | 55                  |                  | 55          |                | 55    |             |          |           |   |
|                                                 |                     |                  |             | Equipm         | ent   |             |          |           |   |
|                                                 |                     |                  |             | Spec           |       | Actual      | Receptor | Estimate  | d |
|                                                 | Impact              |                  |             | Lmax           |       | Lmax        | Distance | Shielding |   |
| Description                                     | Device              | Usage(%          | 6)          | (dBA)          |       | (dBA)       | (feet)   | (dBA)     |   |
| Tractor                                         | No                  |                  | 40          |                | 84    |             | 320      |           | 0 |
|                                                 |                     |                  |             | Results        |       |             |          |           |   |
|                                                 | Calculated          | (dBA)            |             |                |       | Noise Limit | s (dBA)  |           |   |
|                                                 |                     |                  |             | Day            |       |             | Evening  |           |   |
| Equipment                                       | *Lmax               | Leq              |             | Lmax           |       | Leq         | Lmax     | Leq       |   |
| Tractor                                         | 67.9                | 63               | 3.9         | N/A            |       | N/A         | N/A      | N/A       |   |
| Total                                           | 67.9                | 63               | 3.9         | N/A            |       | N/A         | N/A      | N/A       |   |
|                                                 | *Calculated         | d Lmax is        | s the       | e Loude        | st va | alue.       |          |           |   |
|                                                 |                     |                  |             | Rec            | epto  | or #3       |          |           |   |
|                                                 | Baselines (         | dBA)             |             | -              |       |             |          |           |   |
| Descriptior Land Use                            | Daytime             | Evening          |             | Night          |       |             |          |           |   |
| Outpatient Commercia                            | 55                  |                  | 55          |                | 55    |             |          |           |   |

|             |       |             |        |       | Equipme  | ent  |             |          |           |
|-------------|-------|-------------|--------|-------|----------|------|-------------|----------|-----------|
|             |       |             |        |       | Spec     |      | Actual      | Receptor | Estimated |
|             |       | Impact      |        |       | Lmax     |      | Lmax        | Distance | Shielding |
| Description |       | Device      | Usage  | (%)   | (dBA)    |      | (dBA)       | (feet)   | (dBA)     |
| Tractor     |       | No          |        | 40    | :        | 84   |             | 330      | 0         |
|             |       |             |        |       | Results  |      |             |          |           |
|             |       | Calculated  | (dBA)  |       |          |      | Noise Limit | s (dBA)  |           |
|             |       |             |        |       | Day      |      |             | Evening  |           |
| Equipment   |       | *Lmax       | Leq    |       | Lmax     |      | Leq         | Lmax     | Leq       |
| Tractor     |       | 67.6        |        | 63.6  | N/A      |      | N/A         | N/A      | N/A       |
| -           | Total | 67.6        |        | 63.6  | N/A      |      | N/A         | N/A      | N/A       |
|             |       | *Calculated | d Lmax | is th | e Loudes | t va | alue.       |          |           |

## Roadway Construction Noise Model (RCNM), Version 1.1

| Report dat ########<br>Case Descr Site Prep    |                  |           |          |           |          |        |                    |           |    |
|------------------------------------------------|------------------|-----------|----------|-----------|----------|--------|--------------------|-----------|----|
|                                                | Pacolinos (      |           |          | Rec       | ept      | or #1  |                    |           |    |
| Descriptior Land Use<br>Residence † Residentia | Daytime          | Evening   | 55       | Night     | 55       |        |                    |           |    |
|                                                |                  |           |          | Equipm    | ent      | :      |                    |           |    |
|                                                |                  |           |          | Spec      |          | Actual | Receptor           | Estimate  | ed |
| <b>D</b>                                       | Impact           |           |          | Lmax      |          | Lmax   | Distance           | Shielding | g  |
| Description                                    | Device           | Usage(%   | )<br>40  | (dBA)     | 0 -      | (dBA)  | (feet)             | (dBA)     | 0  |
| Grader                                         | NO               |           | 40<br>40 |           | 85<br>04 |        | 185                | ,<br>:    | 0  |
| ITACION                                        | NO               |           | 40       |           | 04       |        | 103                | )         | 0  |
|                                                |                  |           |          | Results   |          |        |                    |           |    |
|                                                | Calculated       | (dBA)     |          | Noise L   |          |        | imits (dBA)        |           |    |
|                                                |                  |           |          | Day       |          |        | Evening            |           |    |
| Equipment                                      | *Lmax            | Leq       |          | Lmax      |          | Leq    | Lmax               | Leq       |    |
| Grader                                         | 73.6             | 69        | 9.7      | N/A       |          | N/A    | N/A                | N/A       |    |
| Tractor                                        | 72.6             | 68        | 3.7      | N/A       |          | N/A    | N/A                | N/A       |    |
| Total                                          | 73.6             | 72        | 2.2      | N/A       |          | N/A    | N/A                | N/A       |    |
|                                                | *Calculate       | d Lmax is | the      | e Loude   | st v     | alue.  |                    |           |    |
|                                                |                  |           |          | Rec       | ont      | or #2  |                    |           |    |
|                                                | Baselines (      | dBA)      |          |           |          |        |                    |           |    |
| Descriptior Land Use                           | Davtime          | Evening   |          | Night     |          |        |                    |           |    |
| Homes Acr Residentia                           | 55               | 0         | 55       |           | 55       |        |                    |           |    |
|                                                |                  |           |          |           |          |        |                    |           |    |
|                                                |                  |           |          | Equipment |          |        | December 5-timeted |           |    |
|                                                |                  |           |          | Spec      |          | Actual | Receptor           | Estimate  | ed |
| Description                                    | Impact           | 11        | • •      | Lmax      |          | Lmax   | Distance           | Shielding | g  |
| Description                                    | Device           | Usage(%   | )<br>40  | (ава)     | 0 -      | (aba)  | (feet)             | (aba)     | 0  |
| Grader                                         | NO               |           | 40<br>40 |           | 85<br>07 |        | 320                | )<br>)    | 0  |
| ITACION                                        | NO               |           | 40       |           | 04       |        | 520                | )         | 0  |
|                                                |                  |           |          | Results   |          |        |                    |           |    |
|                                                | Calculated (dBA) |           |          | Noise Lim |          |        | nits (dBA)         |           |    |
|                                                |                  | . ,       |          | Day       |          |        | Evening            |           |    |
| Equipment                                      | *Lmax            | Leq       |          | Lmax      |          | Leq    | Lmax               | Leq       |    |
| Grader                                         | 68.9             | 64        | 1.9      | N/A       |          | N/A    | N/A                | N/A       |    |
| Tractor                                        | 67.9             | 63        | 8.9      | N/A       |          | N/A    | N/A                | N/A       |    |
| Total                                          | 68.9             | 67        | 7.4      | N/A       |          | N/A    | N/A                | N/A       |    |
|                                                | *Calculate       | d Lmax is | the      | e Loude   | st v     | alue.  |                    |           |    |

|                      |            |          |      | Receptor #3 |           |           |          |          |    |
|----------------------|------------|----------|------|-------------|-----------|-----------|----------|----------|----|
|                      | Baselines  | (dBA)    |      |             |           |           |          |          |    |
| Descriptior Land Use | Daytime    | Evenir   | ۱g   | Night       |           |           |          |          |    |
| Outpatient Commercia | a 55       | i        | 55   |             | 55        |           |          |          |    |
|                      |            |          |      | Equipm      | nent      | :         |          |          |    |
|                      |            |          |      | Spec        |           | Actual    | Receptor | Estimat  | ed |
|                      | Impact     |          |      | Lmax        |           | Lmax      | Distance | Shieldir | ng |
| Description          | Device     | Usage    | (%)  | (dBA)       |           | (dBA)     | (feet)   | (dBA)    |    |
| Grader               | No         |          | 40   |             | 85        |           | 330      | )        | 0  |
| Tractor              | No         |          | 40   |             | 84        |           | 330      | )        | 0  |
|                      |            |          |      | Results     |           |           |          |          |    |
|                      | Calculated |          |      |             | Noise Lim | its (dBA) |          |          |    |
|                      |            |          |      | Day         |           |           | Evening  |          |    |
| Equipment            | *Lmax      | Leq      |      | Lmax        |           | Leq       | Lmax     | Leq      |    |
| Grader               | 68.6       | <b>j</b> | 64.6 | N/A         |           | N/A       | N/A      | N/A      |    |
| Tractor              | 67.6       | ;<br>;   | 63.6 | N/A         |           | N/A       | N/A      | N/A      |    |
| Total                | 68.6       | ;        | 67.2 | N/A         |           | N/A       | N/A      | N/A      |    |

\*Calculated Lmax is the Loudest value.

## Roadway Construction Noise Model (RCNM), Version 1.1

| Report dat: #########                  |             |              |                    |        |          |           |  |  |  |
|----------------------------------------|-------------|--------------|--------------------|--------|----------|-----------|--|--|--|
| Case Descr Asphalt Curshing            |             |              |                    |        |          |           |  |  |  |
|                                        |             |              |                    |        |          |           |  |  |  |
|                                        |             |              | Receptor #1        |        |          |           |  |  |  |
|                                        | Baselines ( | dBA)         |                    |        |          |           |  |  |  |
| Descriptior Land Use                   | Daytime     | Evening      | Night              |        |          |           |  |  |  |
| Residence Residentia                   | 55          | 55           | 5.                 | 5      |          |           |  |  |  |
|                                        |             |              |                    |        |          |           |  |  |  |
|                                        |             |              | Equipmer           | nt     |          |           |  |  |  |
|                                        |             |              | Spec               | Actual | Receptor | Estimated |  |  |  |
|                                        | Impact      |              | Lmax               | Lmax   | Distance | Shielding |  |  |  |
| Description                            | Device      | Usage(%)     | (dBA)              | (dBA)  | (feet)   | (dBA)     |  |  |  |
| Slurry Trenching Mach                  | No          | 50           |                    | 80.4   | . 330    | ) 0       |  |  |  |
|                                        |             |              |                    |        |          |           |  |  |  |
|                                        |             |              | Results            |        |          |           |  |  |  |
|                                        | Calculated  | (dBA)        | Noise Limits (dBA) |        |          |           |  |  |  |
|                                        |             |              | Day                |        | Evening  |           |  |  |  |
| Equipment                              | *Lmax       | Leq          | Lmax               | Leq    | Lmax     | Leq       |  |  |  |
| Slurry Trenching Mach                  | 64          | 61           | N/A                | N/A    | N/A      | N/A       |  |  |  |
| Total                                  | 64          | 61           | N/A                | N/A    | N/A      | N/A       |  |  |  |
|                                        | *Calculate  | d Lmax is th | e Loudest          | value. |          |           |  |  |  |
|                                        |             |              |                    |        |          |           |  |  |  |
|                                        |             |              | Recep              | tor #2 |          |           |  |  |  |
|                                        | Baselines ( | dBA)         |                    |        |          |           |  |  |  |
| Descriptior Land Use                   | Daytime     | Evening      | Night              |        |          |           |  |  |  |
| Homes Acr Residentia                   | l 55        | 55           | 5                  | 5      |          |           |  |  |  |
|                                        |             |              |                    |        |          |           |  |  |  |
|                                        |             |              | Equipmer           | nt     |          |           |  |  |  |
|                                        |             |              | Spec               | Actual | Receptor | Estimated |  |  |  |
|                                        | Impact      |              | Lmax               | Lmax   | Distance | Shielding |  |  |  |
| Description                            | Device      | Usage(%)     | (dBA)              | (dBA)  | (feet)   | (dBA)     |  |  |  |
| Slurry Trenching Mach                  | No          | 50           | I                  | 80.4   | . 320    | 0 0       |  |  |  |
|                                        |             |              |                    |        |          |           |  |  |  |
|                                        |             |              | Results            |        |          |           |  |  |  |
|                                        | Calculated  | (dBA)        | Noise Limits (dBA) |        |          |           |  |  |  |
|                                        |             |              | Day                |        | Evening  |           |  |  |  |
| Equipment                              | *Lmax       | Leq          | Lmax               | Leq    | Lmax     | Leq       |  |  |  |
| Slurry Trenching Mach                  | 64.2        | 61.2         | N/A                | N/A    | N/A      | N/A       |  |  |  |
| Total                                  | 64.2        | 61.2         | N/A                | N/A    | N/A      | N/A       |  |  |  |
| *Calculated Lmax is the Loudest value. |             |              |                    |        |          |           |  |  |  |
|                                        |             |              |                    |        |          |           |  |  |  |
|                                        | Receptor #3 |              |                    |        |          |           |  |  |  |
|                                        | Baselines ( | dBA)         |                    |        |          |           |  |  |  |
| Descriptior Land Use                   | Daytime     | Evening      | Night              |        |          |           |  |  |  |
| Outpatient Commercia                   | 55          | 55           | 5                  | 5      |          |           |  |  |  |

|                       |            |         |    | Equipment |             |          |           |  |
|-----------------------|------------|---------|----|-----------|-------------|----------|-----------|--|
|                       |            |         |    | Spec      | Actual      | Receptor | Estimated |  |
|                       | Impact     |         |    | Lmax      | Lmax        | Distance | Shielding |  |
| Description           | Device     | Usage(% | 6) | (dBA)     | (dBA)       | (feet)   | (dBA)     |  |
| Slurry Trenching Mach | No         |         | 50 |           | 80.4        | 330      | 0         |  |
|                       |            |         |    |           |             |          |           |  |
|                       |            |         |    | Results   |             |          |           |  |
|                       | Calculated | (dBA)   |    |           | Noise Limit | s (dBA)  |           |  |
|                       |            |         |    | Day       |             | Evening  |           |  |
| Equipment             | *Lmax      | Leq     |    | Lmax      | Leq         | Lmax     | Leq       |  |
| Slurry Trenching Mach | 64         |         | 61 | N/A       | N/A         | N/A      | N/A       |  |
| Total                 | 64         |         | 61 | N/A       | N/A         | N/A      | N/A       |  |

\*Calculated Lmax is the Loudest value.